
Properties

abelski



© 2008 Haim Michael

Introduction

 Properties are values that belong to objects. Properties 

determine objects' state, behavior and appearance. 

 XAML allows us to set properties values in a relatively 

simple way.
<Label Content=”Shalom” Background=”Red”/>

 Behind this simple code WPF uses type converters. The 

type converter is responsible for setting the property value.



© 2008 Haim Michael

Introduction

 If required, the type converter will create objects and set 

them as the properties values. In most cases, ready-to-use 

objects are already available through static fields.
  

<Label Content=”Shalom” Background=”Red”/>

ob.Background = Brushes.Red;



© 2008 Haim Michael

Property Element Syntax 

 This syntax allows us to write XAML code that represent a 

property as a separated element that has childs. 

<Grid>
<Grid.Background>

<RadialGradientBrush>
<GradientStop Color="#FFFFFFFF" Offset="0.00"/>
<GradientStop Color="#FFFF0000" Offset="0.20"/>
<GradientStop Color="#FFFFFF00" Offset="0.40"/>
<GradientStop Color="#FF00FF00" Offset="0.60"/>
<GradientStop Color="#FF00FFFF" Offset="0.80"/>
<GradientStop Color="#FF0000FF" Offset="1.00"/>

</RadialGradientBrush>
</Grid.Background>

</Grid>

six RadialGradientBrush objects are created in order to describe gradient stops



© 2008 Haim Michael

Property Element Syntax 

 The property element’s name includes the control’s type 

(Grid), followed by a dot (.), followed by the property’s 

name (Background). 



© 2008 Haim Michael

Property Element Syntax 

 We can alternatively hard code the background property 

assignment. We will get the same result. 

RadialGradientBrush bg = new RadialGradientBrush();
bg.GradientStops.Add(new GradientStop(Colors.White, 0.00));
bg.GradientStops.Add(new GradientStop(Colors.Red, 0.20));
.
.
.
.
ob.Background = bg;



© 2008 Haim Michael

Common Properties

 The WPF control classes inherit from the Control class.

 The properties inherited from this class are common to all of 

the Control classes. 

 Most of these common properties control common 

characteristics such as the size, the color, the position and 

the font. 



© 2008 Haim Michael

Properties Inheritance 

 Similarly to OOP, WPF supports the concept of properties 

inheritance from one control to another. 

 In addition, WPF supports the inheritance of properties' 

values from one control to another when the other is 

contained within the first. This sort of inheritance doesn't 

always apply. There are many exceptions. 



© 2008 Haim Michael

Color

 When dealing with a drawing control the Stroke property 

determines the brush in use to draw the shape's outline and 

the Fill property determines how the shape will be filled. 

 When dealing with non-drawing controls the Background 

property determines how the control's interior is filled and 

the Foreground property determines the color in use when 

drawing objects on top of that control. 



© 2008 Haim Michael

Color



© 2008 Haim Michael

Color



© 2008 Haim Michael

Font

 The most important font related properties include the 

following: FontFamily, FontSize, FontStyle and 

FontWeight, 



© 2008 Haim Michael

Font



© 2008 Haim Michael

Font



© 2008 Haim Michael

Control Size & Position

 The most important properties that control the size and the 

position are width, height, HorizontalAlignment, 

VerticalAlignment and margin. 

 The exact meaning of the each value we assign the 

properties might depend on the specific container we use.



© 2008 Haim Michael

Control Size & Position



© 2008 Haim Michael

Control Size & Position



© 2008 Haim Michael

Image Shape

 In most cases the Shape is displayed in a rectangular area. 

Changing the value of the OpacityMask property we can 

change that.  The pixel's alpha component is the relevant 

one.



© 2008 Haim Michael

Image Shape



© 2008 Haim Michael

Image Shape



© 2008 Haim Michael

Image Shape

 The Image.OpacityMask element contains the 

RadialGradientBrush element, that contains the 

GradientStops elements. 

 The GradiantStops elements define the colors the brush 

uses. The Offset attribute defines the ratio of the distance 

from the center where the color changes. 



© 2008 Haim Michael

Attached Properties

 The attached property is a property available for other 

controls. 

 The syntax includes the name of the property provider, 

followed by a dot, followed by the name of the property. 



© 2008 Haim Michael

Attached Properties



© 2008 Haim Michael

Attached Properties



© 2008 Haim Michael 04/25/10

© 2008 Haim Michael 1

04/25/10 © 2008 Haim Michael 1

Properties

abelski



© 2008 Haim Michael 04/25/10

© 2008 Haim Michael 2

04/25/10 © 2008 Haim Michael 2

Introduction

 Properties are values that belong to objects. Properties 

determine objects' state, behavior and appearance. 

 XAML allows us to set properties values in a relatively 

simple way.
<Label Content=”Shalom” Background=”Red”/>

 Behind this simple code WPF uses type converters. The 

type converter is responsible for setting the property value.

   



© 2008 Haim Michael 04/25/10

© 2008 Haim Michael 3

04/25/10 © 2008 Haim Michael 3

Introduction

 If required, the type converter will create objects and set 

them as the properties values. In most cases, ready-to-use 

objects are already available through static fields.
  

<Label Content=”Shalom” Background=”Red”/>

ob.Background = Brushes.Red;

   



© 2008 Haim Michael 04/25/10

© 2008 Haim Michael 4

04/25/10 © 2008 Haim Michael 4

Property Element Syntax 

 This syntax allows us to write XAML code that represent a 

property as a separated element that has childs. 

<Grid>
<Grid.Background>

<RadialGradientBrush>
<GradientStop Color="#FFFFFFFF" Offset="0.00"/>
<GradientStop Color="#FFFF0000" Offset="0.20"/>
<GradientStop Color="#FFFFFF00" Offset="0.40"/>
<GradientStop Color="#FF00FF00" Offset="0.60"/>
<GradientStop Color="#FF00FFFF" Offset="0.80"/>
<GradientStop Color="#FF0000FF" Offset="1.00"/>

</RadialGradientBrush>
</Grid.Background>

</Grid>

six RadialGradientBrush objects are created in order to describe gradient stops

   



© 2008 Haim Michael 04/25/10

© 2008 Haim Michael 5

04/25/10 © 2008 Haim Michael 5

Property Element Syntax 

 The property element’s name includes the control’s type 

(Grid), followed by a dot (.), followed by the property’s 

name (Background). 

   



© 2008 Haim Michael 04/25/10

© 2008 Haim Michael 6

04/25/10 © 2008 Haim Michael 6

Property Element Syntax 

 We can alternatively hard code the background property 

assignment. We will get the same result. 

RadialGradientBrush bg = new RadialGradientBrush();
bg.GradientStops.Add(new GradientStop(Colors.White, 0.00));
bg.GradientStops.Add(new GradientStop(Colors.Red, 0.20));
.
.
.
.
ob.Background = bg;

   



© 2008 Haim Michael 04/25/10

© 2008 Haim Michael 7

04/25/10 © 2008 Haim Michael 7

Common Properties

 The WPF control classes inherit from the Control class.

 The properties inherited from this class are common to all of 

the Control classes. 

 Most of these common properties control common 

characteristics such as the size, the color, the position and 

the font. 

   



© 2008 Haim Michael 04/25/10

© 2008 Haim Michael 8

04/25/10 © 2008 Haim Michael 8

Properties Inheritance 

 Similarly to OOP, WPF supports the concept of properties 

inheritance from one control to another. 

 In addition, WPF supports the inheritance of properties' 

values from one control to another when the other is 

contained within the first. This sort of inheritance doesn't 

always apply. There are many exceptions. 

   



© 2008 Haim Michael 04/25/10

© 2008 Haim Michael 9

04/25/10 © 2008 Haim Michael 9

Color

 When dealing with a drawing control the Stroke property 

determines the brush in use to draw the shape's outline and 

the Fill property determines how the shape will be filled. 

 When dealing with non-drawing controls the Background 

property determines how the control's interior is filled and 

the Foreground property determines the color in use when 

drawing objects on top of that control. 

   



© 2008 Haim Michael 04/25/10

© 2008 Haim Michael 10

04/25/10 © 2008 Haim Michael 10

Color

   



© 2008 Haim Michael 04/25/10

© 2008 Haim Michael 11

04/25/10 © 2008 Haim Michael 11

Color

   



© 2008 Haim Michael 04/25/10

© 2008 Haim Michael 12

04/25/10 © 2008 Haim Michael 12

Font

 The most important font related properties include the 

following: FontFamily, FontSize, FontStyle and 

FontWeight, 

   



© 2008 Haim Michael 04/25/10

© 2008 Haim Michael 13

04/25/10 © 2008 Haim Michael 13

Font

   



© 2008 Haim Michael 04/25/10

© 2008 Haim Michael 14

04/25/10 © 2008 Haim Michael 14

Font

   



© 2008 Haim Michael 04/25/10

© 2008 Haim Michael 15

04/25/10 © 2008 Haim Michael 15

Control Size & Position

 The most important properties that control the size and the 

position are width, height, HorizontalAlignment, 

VerticalAlignment and margin. 

 The exact meaning of the each value we assign the 

properties might depend on the specific container we use.

   



© 2008 Haim Michael 04/25/10

© 2008 Haim Michael 16

04/25/10 © 2008 Haim Michael 16

Control Size & Position

   



© 2008 Haim Michael 04/25/10

© 2008 Haim Michael 17

04/25/10 © 2008 Haim Michael 17

Control Size & Position

   



© 2008 Haim Michael 04/25/10

© 2008 Haim Michael 18

04/25/10 © 2008 Haim Michael 18

Image Shape

 In most cases the Shape is displayed in a rectangular area. 

Changing the value of the OpacityMask property we can 

change that.  The pixel's alpha component is the relevant 

one.

   



© 2008 Haim Michael 04/25/10

© 2008 Haim Michael 19

04/25/10 © 2008 Haim Michael 19

Image Shape

   



© 2008 Haim Michael 04/25/10

© 2008 Haim Michael 20

04/25/10 © 2008 Haim Michael 20

Image Shape

   



© 2008 Haim Michael 04/25/10

© 2008 Haim Michael 21

04/25/10 © 2008 Haim Michael 21

Image Shape

 The Image.OpacityMask element contains the 

RadialGradientBrush element, that contains the 

GradientStops elements. 

 The GradiantStops elements define the colors the brush 

uses. The Offset attribute defines the ratio of the distance 

from the center where the color changes. 

   



© 2008 Haim Michael 04/25/10

© 2008 Haim Michael 22

04/25/10 © 2008 Haim Michael 22

Attached Properties

 The attached property is a property available for other 

controls. 

 The syntax includes the name of the property provider, 

followed by a dot, followed by the name of the property. 

   



© 2008 Haim Michael 04/25/10

© 2008 Haim Michael 23

04/25/10 © 2008 Haim Michael 23

Attached Properties

   



© 2008 Haim Michael 04/25/10

© 2008 Haim Michael 24

04/25/10 © 2008 Haim Michael 24

Attached Properties

   


