
Drawing

© 2008 Haim Michael (WPF, Drawing)

Introduction

 We can use simple drawing in the process of creating new

controls.

 Through the drawing itself we can use various controls such

as Eclipse, Line, Path, Polygon, Polyline and

Rectangle.

© 2008 Haim Michael (WPF, Drawing)

The Stroke Properties

 Through the stroke properties we can control the way our

lines are drawn.

 The Fill property is the brush in use when drawing the

background.

 The Stroke property is the brush in use for drawing the

edges.

© 2008 Haim Michael (WPF, Drawing)

The Stroke Properties

 The StrokeDashArray property holds an array of values

that specify the number of pixels to be drawn and then be

skipped. These numeric values are scaled in accordance

with the line's thickness.

 The StrokeDashCap property determines the ends of

dashes shape. The possible values are Flat, Round,

Square or Triangle.

© 2008 Haim Michael (WPF, Drawing)

The Stroke Properties

 The StrokeDashOffset determines the distance from the

beginning of the line to the first dash.

 The StrokeEndLineCap determines the shape of the end

of the line. That shape can be Flat, Square, Round or

Triangle.

 The StrokeLineJoin determines how to join adjacent

lines in shapes such as rectangles, polygons and polylines.

The possible values are Miter, Round or Bevel.

© 2008 Haim Michael (WPF, Drawing)

The Stroke Properties

 The StrokeStartLineCap property determines the shape

the line should start with.

 The StrokeThickness property determines the width of

the line.

© 2008 Haim Michael (WPF, Drawing)

The Stroke Properties

<Window xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Title="Simple Stroke Properties Demo"
 Width="400" Height="300" Background="White">

 <WrapPanel Height="100" Width="200">

 <Rectangle Width="40" Height="30"
 Stroke="Blue" StrokeThickness="2"
 Fill="Red" HorizontalAlignment="Left"
 VerticalAlignment="Top"
 Margin="10,10,0,0"/>

 <Line X1="200" Y1="20" X2="50" Y2="100"
 Stroke="Red" StrokeThickness="2"
 StrokeDashArray="2,4"/>

 </WrapPanel>

</Window>

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml

© 2008 Haim Michael (WPF, Drawing)

The Stroke Properties

© 2008 Haim Michael (WPF, Drawing)

The Ellipse Control

 We can use this control for drawing simple ellipses that don't

contain any child elements.

 This control provides us with events we can use for handling

user interaction events related to this control. The more

important of these events are MouseDown, MouseEnter

and MouseLeave.

© 2008 Haim Michael (WPF, Drawing)

The Ellipse Control

 The Width and the Height properties set the size. When

omitting the Width and the Height properties the ellipse

re-sizes together with its container. The location is set by the

container.

© 2008 Haim Michael (WPF, Drawing)

The Ellipse Control

<Window xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 x:Name="MyWindow"
 Title="Simple Ellipse Demo"
 Width="400" Height="300" Background="White">

 <Ellipse Width="200" Height="100"
 Stroke="Red" StrokeThickness="2"
 Fill="Gray" HorizontalAlignment="Left"
 VerticalAlignment="Top"
 Margin="10,10,0,0"/>

</Window>

http://schemas.microsoft.com/winfx/2006/xaml/presentation

© 2008 Haim Michael (WPF, Drawing)

The Ellipse Control

© 2008 Haim Michael (WPF, Drawing)

The Line Control
 This control draws a line segment. The location is determined

using its X1, Y1, X2 and Y2 properties.

 This control provides a set of events through which we can

handle the user interaction with the line we get.

© 2008 Haim Michael (WPF, Drawing)

The Line Control

<Window xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Title="Simple Line Demo"

 Width="600" Height="400" Background="White">

 <WrapPanel Height="250" Width="250">

 <Line X1="100" Y1="100" X2="200" Y2="200"
 Stroke="DarkBlue"/>

 </WrapPanel>

</Window>

© 2008 Haim Michael (WPF, Drawing)

The Line Control

© 2008 Haim Michael (WPF, Drawing)

The Path Control
 This control draws a path composed of series of small shapes

such as lines, arcs, curves and others.

 We use the Path mini language when creating paths using

this control.

© 2008 Haim Michael (WPF, Drawing)

The Path Control

<Window xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

 Title="Simple Path Demo" Width="600" Height="400"
 Background="White">

 <WrapPanel Height="250" Width="250">

 <Path Margin="15" HorizontalAlignment="Center"
 VerticalAlignment="Top" Width="112" Height="83"
 Fill="Gray" Stroke="Blue" StrokeThickness="2"
 Data="M20,40 L20,80 L60,80 L60,40 Z"/>
 </WrapPanel>

</Window>

Path Mini Language

© 2008 Haim Michael (WPF, Drawing)

The Path Control

© 2008 Haim Michael (WPF, Drawing)

The Path Mini Language
 Some of the Path mini language commands are followed by

one or more points. These are parameters the commands

use.

 We separate the points either by placing spaces.

 When the command is in upper case then it means that the

points are absolute.

 When the command is in lower case then it means that the

points are relative.

© 2008 Haim Michael (WPF, Drawing)

The Path Mini Language

command explanation
F0 use the odd even fill rule
F1 use the nonzero fill rule
M or m move to specific point
L or l draw line to specific point
H or h draw horizontal line to specific point
V or v draw vertical line to specific point
C or c draw a cubic curve
S or s draw a bezier curve
Q or q draw a quadratic bezier curve
T or t draw a bezier curve defined by one point only
A or a draw elliptical arc
Z or z close the path by drawing a line to the first point

© 2008 Haim Michael (WPF, Drawing)

Cubic Curve
 The cubic curve command takes three points. Two of them

are the control points. The third is the end point.

 The curve starts at the current point and moves toward the

first control point and then moves away from the second

control point and ends at the end point.

© 2008 Haim Michael (WPF, Drawing)

Cubic Curve

<Window xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
Title="Simple Line Demo" Width="400" Height="300" Background="White">

 <WrapPanel Height="148" Width="202">

<Path Margin="15" HorizontalAlignment="Center"
VerticalAlignment="Top" Width="159" Height="123"
Fill="Gray" Stroke="Blue" StrokeThickness="2"
Data="M20,20 C30,40 60,80 100,100"/>

 </WrapPanel>

</Window>

© 2008 Haim Michael (WPF, Drawing)

Cubic Curve

© 2008 Haim Michael (WPF, Drawing)

Bezier Curve
 The bazier curve S command takes two points. The first is the

control point. The second is the end point.

© 2008 Haim Michael (WPF, Drawing)

Bezier Curve

<Window xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Title="Bezier Curve Demo" Width="400" Height="300"

 Background="White">

 <WrapPanel Height="148" Width="202">

<Path Margin="15" HorizontalAlignment="Center"
VerticalAlignment="Top" Width="159" Height="123"
Fill="Gray" Stroke="Blue" StrokeThickness="2"
Data="M20,20 S8,40 60,80"/>

 </WrapPanel>

</Window>

© 2008 Haim Michael (WPF, Drawing)

Bezier Curve

© 2008 Haim Michael (WPF, Drawing)

Quadratic Bezier Curve
 The quadratic bazier curve Q command takes two points. The

first is the control point. The second is the endpoint.

 The curve starts at the current point, moves towards the

control point and ends at the endpoint while moving away

from the control point.

© 2008 Haim Michael (WPF, Drawing)

Quadratic Bezier Curve

<Window xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

Title="Demo"
Width="400" Height="300" Background="White">

 <WrapPanel Height="148" Width="202">
<Path Margin="15" HorizontalAlignment="Center"

VerticalAlignment="Top" Width="159" Height="123"
Fill="Gray" Stroke="Blue" StrokeThickness="2"
Data="M20,20 Q8,40 60,80"/>

 </WrapPanel>

</Window>

http://schemas.microsoft.com/winfx/2006/xaml/presentation

© 2008 Haim Michael (WPF, Drawing)

Quadratic Bezier Curve

© 2008 Haim Michael (WPF, Drawing)

Bezier Curve with One Point
 The T command creates a bezier curve defined by a single

point.

© 2008 Haim Michael (WPF, Drawing)

Bezier Curve with One Point

<Window xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
Title="Demo" Width="400" Height="300" Background="White">

<WrapPanel Height="148" Width="202">

<Path Margin="15" HorizontalAlignment="Center"
VerticalAlignment="Top" Width="159" Height="123"
Fill="Gray" Stroke="Blue" StrokeThickness="2"
Data="M10,10 T30,30 100,10"/>

 </WrapPanel>

</Window>

© 2008 Haim Michael (WPF, Drawing)

Bezier Curve with One Point

© 2008 Haim Michael (WPF, Drawing)

Arcs
 The A command creates an arc that starts at the current point.

 This command uses five parameters.
size – x and y that defines the radius of the arc

rotation angle – angle of rotation in degrees

large_angle – if 0 then the arc will span less than 180 degrees. if 1 then

 the arc will span 180 degrees.

sweep_direction – if 0 the direction changes counterclockwise. if 1 the direction

 changes clockwise

end_point – where the arc ends

© 2008 Haim Michael (WPF, Drawing)

Arcs

<Window
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
Title="Demo"
Width="241" Height="212" Background="White">

<Path Margin="15" HorizontalAlignment="Center"
VerticalAlignment="Top" Width="224" Height="150"
Fill="Gray" Stroke="Purple" StrokeThickness="2"
Data="M100,100 A150,100 180 0 0 200,100"/>

</Window>

© 2008 Haim Michael (WPF, Drawing)

Arcs

© 2008 Haim Michael (WPF, Drawing)

Path of Objects
 Instead of using the path mini language we can add child

objects to our path object

© 2008 Haim Michael (WPF, Drawing)

Path of Objects
<Window
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
Title="Demo"
Width="241" Height="212" Background="White">

 <Path Stroke="Blue" StrokeThickness="5">
 <Path.Data>
 <PathGeometry>
 <PathGeometry.Figures>
 <PathFigureCollection>
 <PathFigure StartPoint="60,20">
 <PathFigure.Segments>
 <PathSegmentCollection>
 <PolyQuadraticBezierSegment
Points="120,180 150,20 160,00 40,120 40,40"/>
 </PathSegmentCollection>
 </PathFigure.Segments>
 </PathFigure>
 </PathFigureCollection>
 </PathGeometry.Figures>
 </PathGeometry>
 </Path.Data>
 </Path>

</Window>

© 2008 Haim Michael (WPF, Drawing)

Path of Objects

© 2008 Haim Michael (WPF, Drawing)

The Polygon Control
 This object draws lines segments that connect a series of

points.

 The last point is automatically connected with the first.

© 2008 Haim Michael (WPF, Drawing)

The Polygon Control

<Window
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
Title="Demo" Width="241" Height="212" Background="White">

 <Polygon Margin="10" HorizontalAlignment="Center"
 VerticalAlignment="Top" Width="Auto"
 Height="Auto" Fill="Orange"
 Stroke="#FF000000" StrokeThickness="5"
 Points="50,50 100,50, 75,100"/>

</Window>

© 2008 Haim Michael (WPF, Drawing)

The Polygon Control

© 2008 Haim Michael (WPF, Drawing)

The Polyline Control
 This object draws line segments that connect the series of

points we pass over to it.

 Unlike the Polygone object it doesn't automatically connect

the last point to the first.

© 2008 Haim Michael (WPF, Drawing)

The Polyline Control

<Window xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
Title="Demo" Width="241" Height="212" Background="White">

 <Polyline Margin="10" HorizontalAlignment="Center"
 VerticalAlignment="Top" Width="Auto"
 Height="Auto" Fill="Orange"
 Stroke="#FF000000" StrokeThickness="5"
 Points="50,50 100,50, 75,100"/>

</Window>

© 2008 Haim Michael (WPF, Drawing)

The Polyline Control

© 2008 Haim Michael (WPF, Drawing)

The Rectangle Control
 This object draws a simple rectangle that cannot contain any

children.

 The rectangle size is determined by its Width and Height. The

location is determined by the container.

© 2008 Haim Michael (WPF, Drawing)

The Rectangle Control

<Window xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
Title="Demo" Width="241" Height="212" Background="White">

 <Rectangle Width="200" Height="100" Margin="10"
 Stroke="Red" StrokeThickness="10"/>

</Window>

© 2008 Haim Michael (WPF, Drawing)

The Rectangle Control

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47

