
© 2010 Haim Michael

Location Services

© 2010 Haim Michael

Introduction

 The location service gets its data from various sources such

as GPS, Wi-Fi, and the cellular network.

 When developing a location aware application we should

balance between the need for getting an accurate data and

our wish to reduce the power consumption. The Wi-Fi and the

cellular radio produce less accurate location information and

use less power. The GPS receiver usually provide with a more

precise location data and usually consume more power.

© 2010 Haim Michael

The GeoCoordinateWatcher Class

 We can use this class for getting location data during the

execution of our application.
...
GeoCoordinateWatcher ob = new
 GeoCoordinateWatcher(GeoPositionAccuracy.Low);
…

 In order to use this class when developing your application

make sure to add the System.Device.Location assembly

reference to your project.

© 2010 Haim Michael

The GeoCoordinateWatcher

 The native code layer is responsible for evaluating the

available location data sources and selecting the most

suitable source based on the value we pass over when

instantiating the GeoCoordinateWatcher class.

 When instantiating GeoCoordinateWatcher we should pass

over one of two possible values:
GeoPositionAccuracy.Low
GeoPositionAccuracy.High

© 2010 Haim Michael

The MovementTreshold Property

 This property specifies the minimum change in position that

must take place so that the PositionChanged event will be

raised.

 We set this property with a value that specifies the change in

metters. Once the specified change takes place a

PositionChanged event is raised.

© 2010 Haim Michael

The MovementTreshold Property

 Microsoft recommends on setting the value of this property to

be 20 metters at the minimum. According to Microsoft a

smaller value might result in higher power consumption and in

un accurate behavior.

...
GeoCoordinateWatcher locationWatcher =
 new GeoCoordinateWatcher(GeoPositionAccuracy.Low);
locationWatcher.MovementThreshold = 20;
...

© 2010 Haim Michael

The PositionChanged Event

 The PositionChanged event takes place each whenever

the change is bigger than the MovementTreshold value.

...
GeoCoordinateWatcher locationWatcher =
 new GeoCoordinateWatcher(GeoPositionAccuracy.Low);
locationWatcher.MovementThreshold = 20;
locationWatcher.PositionChanged += MyLocationChangeMethod;
...

© 2010 Haim Michael

The StatusChanged Event

 When the status of the GeoCoordinateWatcher object

changes (e.g. the GPS data isn't available) the StatusEvent

takes place.

...
GeoCoordinateWatcher locationWatcher =
 new GeoCoordinateWatcher(GeoPositionAccuracy.Low);
locationWatcher.MovementThreshold = 20;
locationWatcher.PositionChanged += MyLocationChangeMethod;
locationWatcher.StatusChanged += MyLocationServiceStatusMethod;
...

© 2010 Haim Michael

The Start Method

 We start the GeoCoordinateWatcher by calling the

asynchronous Start() method on it.

...
GeoCoordinateWatcher locationWatcher =
 new GeoCoordinateWatcher(GeoPositionAccuracy.Low);
locationWatcher.MovementThreshold = 20;
locationWatcher.PositionChanged += MyLocationChangeMethod;
locationWatcher.StatusChanged += MyLocationServiceStatusMethod;
locationWatcher.Start();
...

© 2010 Haim Michael

The Permission Property

 We can check the Permission in order to know whether the

user chose to disable the location service.

...
GeoCoordinateWatcher locationWatcher =
 new GeoCoordinateWatcher(GeoPositionAccuracy.Low);
locationWatcher.MovementThreshold = 20;
if(locationManager.Permission==GeoPositionPermission.Denied)
{
 ...
}
...

© 2010 Haim Michael

Getting The Location Data

 The method we define to handle location data should be of

the EventHandler<GeoPositionStatusChangedEventArgs>
type.
...
void MyPositionChanged(GeoPositionChangedEventArgs<GeoCoordinate> e)
{

double latitude = e.Position.Location.Latitude;
double longitude = e.Position.Location.Longitude;

}
...

the Location property is of the GeoCoordinate type

© 2010 Haim Michael

The Stop Method

 We stop the GeoCoordinateWatcher by calling the

Stop() method on it.
...
locationWatcher.Stop();
...

 When there is no need in the location service we better call

the Stop() method in order to maximize the battery life.

© 2010 Haim Michael 07/10/10

© 2010 Haim Michael 1

07/10/10 © 2010 Haim Michael 1

Location Services

© 2010 Haim Michael 07/10/10

© 2010 Haim Michael 2

07/10/10 © 2010 Haim Michael 2

Introduction

 The location service gets its data from various sources such

as GPS, Wi-Fi, and the cellular network.

 When developing a location aware application we should

balance between the need for getting an accurate data and

our wish to reduce the power consumption. The Wi-Fi and the

cellular radio produce less accurate location information and

use less power. The GPS receiver usually provide with a more

precise location data and usually consume more power.

© 2010 Haim Michael 07/10/10

© 2010 Haim Michael 3

07/10/10 © 2010 Haim Michael 3

The GeoCoordinateWatcher Class

 We can use this class for getting location data during the

execution of our application.
...
GeoCoordinateWatcher ob = new
 GeoCoordinateWatcher(GeoPositionAccuracy.Low);
…

 In order to use this class when developing your application

make sure to add the System.Device.Location assembly

reference to your project.

© 2010 Haim Michael 07/10/10

© 2010 Haim Michael 4

07/10/10 © 2010 Haim Michael 4

The GeoCoordinateWatcher

 The native code layer is responsible for evaluating the

available location data sources and selecting the most

suitable source based on the value we pass over when

instantiating the GeoCoordinateWatcher class.

 When instantiating GeoCoordinateWatcher we should pass

over one of two possible values:
GeoPositionAccuracy.Low
GeoPositionAccuracy.High

© 2010 Haim Michael 07/10/10

© 2010 Haim Michael 5

07/10/10 © 2010 Haim Michael 5

The MovementTreshold Property

 This property specifies the minimum change in position that

must take place so that the PositionChanged event will be

raised.

 We set this property with a value that specifies the change in

metters. Once the specified change takes place a

PositionChanged event is raised.

© 2010 Haim Michael 07/10/10

© 2010 Haim Michael 6

07/10/10 © 2010 Haim Michael 6

The MovementTreshold Property

 Microsoft recommends on setting the value of this property to

be 20 metters at the minimum. According to Microsoft a

smaller value might result in higher power consumption and in

un accurate behavior.

...
GeoCoordinateWatcher locationWatcher =
 new GeoCoordinateWatcher(GeoPositionAccuracy.Low);
locationWatcher.MovementThreshold = 20;
...

© 2010 Haim Michael 07/10/10

© 2010 Haim Michael 7

07/10/10 © 2010 Haim Michael 7

The PositionChanged Event

 The PositionChanged event takes place each whenever

the change is bigger than the MovementTreshold value.

...
GeoCoordinateWatcher locationWatcher =
 new GeoCoordinateWatcher(GeoPositionAccuracy.Low);
locationWatcher.MovementThreshold = 20;
locationWatcher.PositionChanged += MyLocationChangeMethod;
...

© 2010 Haim Michael 07/10/10

© 2010 Haim Michael 8

07/10/10 © 2010 Haim Michael 8

The StatusChanged Event

 When the status of the GeoCoordinateWatcher object

changes (e.g. the GPS data isn't available) the StatusEvent

takes place.

...
GeoCoordinateWatcher locationWatcher =
 new GeoCoordinateWatcher(GeoPositionAccuracy.Low);
locationWatcher.MovementThreshold = 20;
locationWatcher.PositionChanged += MyLocationChangeMethod;
locationWatcher.StatusChanged += MyLocationServiceStatusMethod;
...

© 2010 Haim Michael 07/10/10

© 2010 Haim Michael 9

07/10/10 © 2010 Haim Michael 9

The Start Method

 We start the GeoCoordinateWatcher by calling the

asynchronous Start() method on it.

...
GeoCoordinateWatcher locationWatcher =
 new GeoCoordinateWatcher(GeoPositionAccuracy.Low);
locationWatcher.MovementThreshold = 20;
locationWatcher.PositionChanged += MyLocationChangeMethod;
locationWatcher.StatusChanged += MyLocationServiceStatusMethod;
locationWatcher.Start();
...

© 2010 Haim Michael 07/10/10

© 2010 Haim Michael 10

07/10/10 © 2010 Haim Michael 10

The Permission Property

 We can check the Permission in order to know whether the

user chose to disable the location service.

...
GeoCoordinateWatcher locationWatcher =
 new GeoCoordinateWatcher(GeoPositionAccuracy.Low);
locationWatcher.MovementThreshold = 20;
if(locationManager.Permission==GeoPositionPermission.Denied)
{
 ...
}
...

© 2010 Haim Michael 07/10/10

© 2010 Haim Michael 11

07/10/10 © 2010 Haim Michael 11

Getting The Location Data

 The method we define to handle location data should be of

the EventHandler<GeoPositionStatusChangedEventArgs>
type.
...
void MyPositionChanged(GeoPositionChangedEventArgs<GeoCoordinate> e)
{

double latitude = e.Position.Location.Latitude;
double longitude = e.Position.Location.Longitude;

}
...

the Location property is of the GeoCoordinate type

© 2010 Haim Michael 07/10/10

© 2010 Haim Michael 12

07/10/10 © 2010 Haim Michael 12

The Stop Method

 We stop the GeoCoordinateWatcher by calling the

Stop() method on it.
...
locationWatcher.Stop();
...

 When there is no need in the location service we better call

the Stop() method in order to maximize the battery life.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12

