
© 2010 Haim Michael

Games Development

© 2010 Haim Michael

Introduction

 The WP7 games development is based on the XNA

framework.

© 2010 Haim Michael

The XNA Game Studio Template

 When creating a new project we should select the XNA Game

Studio Windows Phone Game template.

© 2010 Haim Michael

Introduction

© 2010 Haim Michael

The Texture2D Class

 Each object of this type represents a 2D grid of texels. A texel

is the smallest unit that can be stored by the graphics

processing unit (GPU). Each texel includes the color and the

transparanecy values.

© 2010 Haim Michael

The Vector2 Class

 Each object of this type represents a 2D vector. In order to

create a Vector2 object we need to specify two numeric

values of the double type.

© 2010 Haim Michael

The Game Resources

 The separation between the code and the resources ease the

development process.

 The resources include image files, sound files and any other

file the code uses.

 The resurces are loaded into the execution of our code by

calling the Content.Load() method.

© 2010 Haim Michael

Simple Game

© 2010 Haim Michael

Simple Game

namespace my_first_wp7_xna_game
{
 public class Game1 : Microsoft.Xna.Framework.Game
 {
 GraphicsDeviceManager graphics;
 SpriteBatch batch;
 Texture2D firstTexture;
 Texture2D secondTexture;
 Vector2 firstSpritePosition;
 Vector2 secondSpritePosition;
 Vector2 firstSpriteSpeed = new Vector2(40.0f, 20.0f);
 Vector2 secondSpriteSpeed = new Vector2(80.0f, 80.0f);
 int firstSpriteHeight;
 int firstSpriteWidth;
 int secondSpriteHeight;
 int secondSpriteWidth;
 SoundEffect sound;
 public Game1()
 {
 graphics = new GraphicsDeviceManager(this);
 Content.RootDirectory = "Content";
 TargetElapsedTime = TimeSpan.FromTicks(333333);
 graphics.PreferredBackBufferWidth = 480;
 graphics.PreferredBackBufferHeight = 800;
 }

© 2010 Haim Michael

Simple Game

 protected override void Initialize()
 {
 base.Initialize();
 }

 protected override void LoadContent()
 {
 batch = new SpriteBatch(GraphicsDevice);
 firstTexture = Content.Load<Texture2D>("skycube");
 secondTexture = Content.Load<Texture2D>("skycube");
 sound = Content.Load<SoundEffect>("explosion");
 firstSpritePosition.X = 0;
 firstSpritePosition.Y = 0;
 secondSpritePosition.X = graphics.GraphicsDevice.Viewport.Width

- firstTexture.Width;
 secondSpritePosition.Y = graphics.GraphicsDevice.Viewport.Height

- secondTexture.Height;
 firstSpriteHeight = firstTexture.Bounds.Height;
 firstSpriteWidth = firstTexture.Bounds.Width;
 secondSpriteHeight = secondTexture.Bounds.Height;
 secondSpriteWidth = secondTexture.Bounds.Width;
 }

© 2010 Haim Michael

Simple Game

 protected override void UnloadContent()
 {
 }

 protected override void Update(GameTime gameTime)
 {
 if (GamePad.GetState(PlayerIndex.One).Buttons.Back ==

ButtonState.Pressed)
 {
 this.Exit();
 }
 UpdateSprite(gameTime, ref firstSpritePosition,

ref firstSpriteSpeed, firstTexture);
 UpdateSprite(gameTime, ref secondSpritePosition,

ref secondSpriteSpeed, secondTexture);
 CheckCollision();
 base.Update(gameTime);
 }

© 2010 Haim Michael

Simple Game
 void UpdateSprite(GameTime gameTime, ref Vector2 position,
 ref Vector2 speed, Texture2D texture)
 {
 position += speed * (float)gameTime.ElapsedGameTime.TotalSeconds;
 int maxX = graphics.GraphicsDevice.Viewport.Width - texture.Width;
 int minX = 0;
 int maxY = graphics.GraphicsDevice.Viewport.Height - texture.Height;
 int minY = texture.Height/2;
 if (position.X > maxX) {
 speed.X *= -1;
 position.X = maxX;
 }
 else if (position.X < minX) {
 speed.X *= -1;
 position.X = minX;
 }
 if (position.Y > maxY) {
 speed.Y *= -1;
 position.Y = maxY;
 }
 else if (position.Y < minY) {
 speed.Y *= -1;
 position.Y = minY;
 }
 }

© 2010 Haim Michael

Simple Game

 protected override void Draw(GameTime gameTime)
 {
 graphics.GraphicsDevice.Clear(Color.LightGray);
 batch.Begin(SpriteSortMode.BackToFront, BlendState.Opaque);
 batch.Draw(firstTexture, firstSpritePosition, Color.Yellow);
 batch.End();
 batch.Begin(SpriteSortMode.BackToFront, BlendState.AlphaBlend);
 batch.Draw(secondTexture, secondSpritePosition, Color.Purple);
 batch.End();
 base.Draw(gameTime);
 }

© 2010 Haim Michael

Simple Game

 void CheckCollision()
 {
 BoundingBox firstBoundingBox = new BoundingBox(

new Vector3(firstSpritePosition.X - (firstSpriteWidth / 2),
firstSpritePosition.Y - (firstSpriteHeight / 2), 0),
new Vector3(firstSpritePosition.X + (firstSpriteWidth / 2),
firstSpritePosition.Y + (firstSpriteHeight / 2), 0));

 BoundingBox secondBoundingBox = new BoundingBox(
new Vector3(secondSpritePosition.X - (secondSpriteWidth / 2),
secondSpritePosition.Y - (secondSpriteHeight / 2), 0),
new Vector3(secondSpritePosition.X + (secondSpriteWidth / 2),
secondSpritePosition.Y + (secondSpriteHeight / 2), 0));

 if (firstBoundingBox.Intersects(secondBoundingBox)){
 sound.Play();
 }
 }
 }
}

© 2010 Haim Michael

Simple Game

© 2010 Haim Michael

The TouchPanel Static Class

 The multi touch screen can detect up to four simultaneous

fingers.

 We handle the touch events through the Update method. The

TouchPanel static class provides us with methods we can

use to obtain input.

© 2010 Haim Michael

The TouchPanelCapabilities Class

 Calling the TouchPanel.GetCapabilities method we get

a TouchPanelCapabilities object through which we can

get information about the multi touch device.

 The TouchPanelCapabilities object has two properties:
IsConnected
This property returns true if the touch panel is available.
MaximumTouchCount
This property returns the maximum number of touch locations that can be tracked

by the touch pad device.

© 2010 Haim Michael

The TouchCollection Class

 Calling the GetState() static method defined in

TouchPanel we get a TouchCollection object.

 The TouchCollection object is a collection of zero or more

TouchLocation object.

© 2010 Haim Michael

The TouchLocation Class

 Each TouchLocation object has the following properties:
State
This property is of the TouchLocationState enumeration type. Its possible values

are Pressed, Moved and Released.
Position
This property is of the Vector2 type. It indicates the finger position.
Id
This id identifies a specific finger.
Pressure
This property returns the recorded pressure in G force.

© 2010 Haim Michael

The TouchLocation Class

 When we don't touch the screen the TouchCollection will

be empty.

 When the first finger touches the screen the

TouchCollection will contain a single TouchLocation

object with a State equals to Pressed.

 Each subsequent call to TouchPanel.GetState will return

a TouchCollection with a TouchLocation object that its

State is Moved even if the finger doesn't really move.

© 2010 Haim Michael

The TouchLocation Class

 When the finger is lifted from the screen the State of the

TouchLocation object is changed into Released.

 Each subsequent call to TouchPanel.GetState will return

an empty collection.

 When tapping the screen fast enough we might get a

TouchLocation object with a State equals to Pressed

followed with a TouchLocation object with a State equals

to Released without having any Moved state.

© 2010 Haim Michael

Tracking Particular Fingers

 We can use the Id property in order to track particular

fingers.

 We can easily track each finger by using a Dictionary

object.

© 2010 Haim Michael

Tracking Specific Finger Changes

 When getting a TouchLocation object we can call the

TryGetPreviousLocation method on it.
...
TouchLocation previousTouchLocation;
bool success = touchLocation.TryGetPreviousLocation(

out previousTouchLocation);
...

 Through calling this we can obtain the previous location and

calculate the difference.

© 2010 Haim Michael

Tracking Specific Finger Changes

 If the user has just touched the screen then the method

TryGetPreviousLocation method will return false, and

the State of the TouchLocation object that describes the

previous location will be Invalid.

© 2010 Haim Michael

The Update Method Code

 We should place the code that checks the touch screen within

the Update method.

© 2010 Haim Michael

The Update Method Code

protected override void Update(GameTime gameTime)
{

if (GamePad.GetState(PlayerIndex.One).Buttons.Back == ButtonState.Pressed)
this.Exit();

TouchCollection touchLocations = TouchPanel.GetState();
foreach (TouchLocation touchLocation in touchLocations)
{

if (touchLocation.State == TouchLocationState.Pressed)
{

Vector2 touchPosition = touchLocation.Position;
...

}
}
base.Update(gameTime);

}

© 2010 Haim Michael 08/14/10

© 2010 Haim Michael 1

08/14/10 © 2010 Haim Michael 1

Games Development

© 2010 Haim Michael 08/14/10

© 2010 Haim Michael 2

08/14/10 © 2010 Haim Michael 2

Introduction

 The WP7 games development is based on the XNA

framework.

© 2010 Haim Michael 08/14/10

© 2010 Haim Michael 3

08/14/10 © 2010 Haim Michael 3

The XNA Game Studio Template

 When creating a new project we should select the XNA Game

Studio Windows Phone Game template.

© 2010 Haim Michael 08/14/10

© 2010 Haim Michael 4

08/14/10 © 2010 Haim Michael 4

Introduction

© 2010 Haim Michael 08/14/10

© 2010 Haim Michael 5

08/14/10 © 2010 Haim Michael 5

The Texture2D Class

 Each object of this type represents a 2D grid of texels. A texel

is the smallest unit that can be stored by the graphics

processing unit (GPU). Each texel includes the color and the

transparanecy values.

© 2010 Haim Michael 08/14/10

© 2010 Haim Michael 6

08/14/10 © 2010 Haim Michael 6

The Vector2 Class

 Each object of this type represents a 2D vector. In order to

create a Vector2 object we need to specify two numeric

values of the double type.

© 2010 Haim Michael 08/14/10

© 2010 Haim Michael 7

08/14/10 © 2010 Haim Michael 7

The Game Resources

 The separation between the code and the resources ease the

development process.

 The resources include image files, sound files and any other

file the code uses.

 The resurces are loaded into the execution of our code by

calling the Content.Load() method.

© 2010 Haim Michael 08/14/10

© 2010 Haim Michael 8

08/14/10 © 2010 Haim Michael 8

Simple Game

© 2010 Haim Michael 08/14/10

© 2010 Haim Michael 9

08/14/10 © 2010 Haim Michael 9

Simple Game

namespace my_first_wp7_xna_game
{
 public class Game1 : Microsoft.Xna.Framework.Game
 {
 GraphicsDeviceManager graphics;
 SpriteBatch batch;
 Texture2D firstTexture;
 Texture2D secondTexture;
 Vector2 firstSpritePosition;
 Vector2 secondSpritePosition;
 Vector2 firstSpriteSpeed = new Vector2(40.0f, 20.0f);
 Vector2 secondSpriteSpeed = new Vector2(80.0f, 80.0f);
 int firstSpriteHeight;
 int firstSpriteWidth;
 int secondSpriteHeight;
 int secondSpriteWidth;
 SoundEffect sound;
 public Game1()
 {
 graphics = new GraphicsDeviceManager(this);
 Content.RootDirectory = "Content";
 TargetElapsedTime = TimeSpan.FromTicks(333333);
 graphics.PreferredBackBufferWidth = 480;
 graphics.PreferredBackBufferHeight = 800;
 }

© 2010 Haim Michael 08/14/10

© 2010 Haim Michael 10

08/14/10 © 2010 Haim Michael 10

Simple Game

 protected override void Initialize()
 {
 base.Initialize();
 }

 protected override void LoadContent()
 {
 batch = new SpriteBatch(GraphicsDevice);
 firstTexture = Content.Load<Texture2D>("skycube");
 secondTexture = Content.Load<Texture2D>("skycube");
 sound = Content.Load<SoundEffect>("explosion");
 firstSpritePosition.X = 0;
 firstSpritePosition.Y = 0;
 secondSpritePosition.X = graphics.GraphicsDevice.Viewport.Width

- firstTexture.Width;
 secondSpritePosition.Y = graphics.GraphicsDevice.Viewport.Height

- secondTexture.Height;
 firstSpriteHeight = firstTexture.Bounds.Height;
 firstSpriteWidth = firstTexture.Bounds.Width;
 secondSpriteHeight = secondTexture.Bounds.Height;
 secondSpriteWidth = secondTexture.Bounds.Width;
 }

© 2010 Haim Michael 08/14/10

© 2010 Haim Michael 11

08/14/10 © 2010 Haim Michael 11

Simple Game

 protected override void UnloadContent()
 {
 }

 protected override void Update(GameTime gameTime)
 {
 if (GamePad.GetState(PlayerIndex.One).Buttons.Back ==

ButtonState.Pressed)
 {
 this.Exit();
 }
 UpdateSprite(gameTime, ref firstSpritePosition,

ref firstSpriteSpeed, firstTexture);
 UpdateSprite(gameTime, ref secondSpritePosition,

ref secondSpriteSpeed, secondTexture);
 CheckCollision();
 base.Update(gameTime);
 }

© 2010 Haim Michael 08/14/10

© 2010 Haim Michael 12

08/14/10 © 2010 Haim Michael 12

Simple Game
 void UpdateSprite(GameTime gameTime, ref Vector2 position,
 ref Vector2 speed, Texture2D texture)
 {
 position += speed * (float)gameTime.ElapsedGameTime.TotalSeconds;
 int maxX = graphics.GraphicsDevice.Viewport.Width - texture.Width;
 int minX = 0;
 int maxY = graphics.GraphicsDevice.Viewport.Height - texture.Height;
 int minY = texture.Height/2;
 if (position.X > maxX) {
 speed.X *= -1;
 position.X = maxX;
 }
 else if (position.X < minX) {
 speed.X *= -1;
 position.X = minX;
 }
 if (position.Y > maxY) {
 speed.Y *= -1;
 position.Y = maxY;
 }
 else if (position.Y < minY) {
 speed.Y *= -1;
 position.Y = minY;
 }
 }

© 2010 Haim Michael 08/14/10

© 2010 Haim Michael 13

08/14/10 © 2010 Haim Michael 13

Simple Game

 protected override void Draw(GameTime gameTime)
 {
 graphics.GraphicsDevice.Clear(Color.LightGray);
 batch.Begin(SpriteSortMode.BackToFront, BlendState.Opaque);
 batch.Draw(firstTexture, firstSpritePosition, Color.Yellow);
 batch.End();
 batch.Begin(SpriteSortMode.BackToFront, BlendState.AlphaBlend);
 batch.Draw(secondTexture, secondSpritePosition, Color.Purple);
 batch.End();
 base.Draw(gameTime);
 }

© 2010 Haim Michael 08/14/10

© 2010 Haim Michael 14

08/14/10 © 2010 Haim Michael 14

Simple Game

 void CheckCollision()
 {
 BoundingBox firstBoundingBox = new BoundingBox(

new Vector3(firstSpritePosition.X - (firstSpriteWidth / 2),
firstSpritePosition.Y - (firstSpriteHeight / 2), 0),
new Vector3(firstSpritePosition.X + (firstSpriteWidth / 2),
firstSpritePosition.Y + (firstSpriteHeight / 2), 0));

 BoundingBox secondBoundingBox = new BoundingBox(
new Vector3(secondSpritePosition.X - (secondSpriteWidth / 2),
secondSpritePosition.Y - (secondSpriteHeight / 2), 0),
new Vector3(secondSpritePosition.X + (secondSpriteWidth / 2),
secondSpritePosition.Y + (secondSpriteHeight / 2), 0));

 if (firstBoundingBox.Intersects(secondBoundingBox)){
 sound.Play();
 }
 }
 }
}

© 2010 Haim Michael 08/14/10

© 2010 Haim Michael 15

08/14/10 © 2010 Haim Michael 15

Simple Game

© 2010 Haim Michael 08/14/10

© 2010 Haim Michael 16

08/14/10 © 2010 Haim Michael 16

The TouchPanel Static Class

 The multi touch screen can detect up to four simultaneous

fingers.

 We handle the touch events through the Update method. The

TouchPanel static class provides us with methods we can

use to obtain input.

© 2010 Haim Michael 08/14/10

© 2010 Haim Michael 17

08/14/10 © 2010 Haim Michael 17

The TouchPanelCapabilities Class

 Calling the TouchPanel.GetCapabilities method we get

a TouchPanelCapabilities object through which we can

get information about the multi touch device.

 The TouchPanelCapabilities object has two properties:
IsConnected
This property returns true if the touch panel is available.
MaximumTouchCount
This property returns the maximum number of touch locations that can be tracked

by the touch pad device.

© 2010 Haim Michael 08/14/10

© 2010 Haim Michael 18

08/14/10 © 2010 Haim Michael 18

The TouchCollection Class

 Calling the GetState() static method defined in

TouchPanel we get a TouchCollection object.

 The TouchCollection object is a collection of zero or more

TouchLocation object.

© 2010 Haim Michael 08/14/10

© 2010 Haim Michael 19

08/14/10 © 2010 Haim Michael 19

The TouchLocation Class

 Each TouchLocation object has the following properties:
State
This property is of the TouchLocationState enumeration type. Its possible values

are Pressed, Moved and Released.
Position
This property is of the Vector2 type. It indicates the finger position.
Id
This id identifies a specific finger.
Pressure
This property returns the recorded pressure in G force.

© 2010 Haim Michael 08/14/10

© 2010 Haim Michael 20

08/14/10 © 2010 Haim Michael 20

The TouchLocation Class

 When we don't touch the screen the TouchCollection will

be empty.

 When the first finger touches the screen the

TouchCollection will contain a single TouchLocation

object with a State equals to Pressed.

 Each subsequent call to TouchPanel.GetState will return

a TouchCollection with a TouchLocation object that its

State is Moved even if the finger doesn't really move.

© 2010 Haim Michael 08/14/10

© 2010 Haim Michael 21

08/14/10 © 2010 Haim Michael 21

The TouchLocation Class

 When the finger is lifted from the screen the State of the

TouchLocation object is changed into Released.

 Each subsequent call to TouchPanel.GetState will return

an empty collection.

 When tapping the screen fast enough we might get a

TouchLocation object with a State equals to Pressed

followed with a TouchLocation object with a State equals

to Released without having any Moved state.

© 2010 Haim Michael 08/14/10

© 2010 Haim Michael 22

08/14/10 © 2010 Haim Michael 22

Tracking Particular Fingers

 We can use the Id property in order to track particular

fingers.

 We can easily track each finger by using a Dictionary

object.

© 2010 Haim Michael 08/14/10

© 2010 Haim Michael 23

08/14/10 © 2010 Haim Michael 23

Tracking Specific Finger Changes

 When getting a TouchLocation object we can call the

TryGetPreviousLocation method on it.
...
TouchLocation previousTouchLocation;
bool success = touchLocation.TryGetPreviousLocation(

out previousTouchLocation);
...

 Through calling this we can obtain the previous location and

calculate the difference.

© 2010 Haim Michael 08/14/10

© 2010 Haim Michael 24

08/14/10 © 2010 Haim Michael 24

Tracking Specific Finger Changes

 If the user has just touched the screen then the method

TryGetPreviousLocation method will return false, and

the State of the TouchLocation object that describes the

previous location will be Invalid.

© 2010 Haim Michael 08/14/10

© 2010 Haim Michael 25

08/14/10 © 2010 Haim Michael 25

The Update Method Code

 We should place the code that checks the touch screen within

the Update method.

© 2010 Haim Michael 08/14/10

© 2010 Haim Michael 26

08/14/10 © 2010 Haim Michael 26

The Update Method Code

protected override void Update(GameTime gameTime)
{

if (GamePad.GetState(PlayerIndex.One).Buttons.Back == ButtonState.Pressed)
this.Exit();

TouchCollection touchLocations = TouchPanel.GetState();
foreach (TouchLocation touchLocation in touchLocations)
{

if (touchLocation.State == TouchLocationState.Pressed)
{

Vector2 touchPosition = touchLocation.Position;
...

}
}
base.Update(gameTime);

}

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

