
© 2010 Haim Michael

Accelerometer

© 2010 Haim Michael

Introduction

 The accelerometer sensor measures acceleration forces such

as gravity and the forces caused by moving the mobile

telephone.

 The Windows Phone has one accelerometer sensor at the

minimum.

© 2010 Haim Michael

The AccelerometerReading Class

 The accelerometer data is delivered to our application through

the AccelerometerReading class.

 The AccelerometerReading class includes the X, Y and Z

properties. Each one of them provides a value in between -1

and 1. These three values indicate the direction of the

acceleration for each axis.

© 2010 Haim Michael

The Microsoft.Devices.Sensors Assembly

 This assembly includes the sensor framework. In order to

develop an application that uses the sensor framework we

must add to our project a reference to this assembly.

 Once the reference to this assembly was added to our project

we can add the following using statement into our code.
...
using Microsoft.Devices.Sensors;
...

© 2010 Haim Michael

The AccelerometerSensor Class

 This is the main class we will use to access the accelerometer

sensor.
...
AccelerometerSensor sensor = new AccelerometerSensor();
...

© 2010 Haim Michael

The Portrait and Landscape Modes

 The default template generated by the Visual Studio supports

both the portrait and the landscape modes. When the user

changes the phone position it automatically changes the

display between these two modes.

...
public MainPage()
{
 InitializeComponent();
 SupportedOrientations = SupportedPageOrientation.Portrait

| SupportedPageOrientation.Landscape;
 }
 ...

© 2010 Haim Michael

The Portrait and Landscape Modes

 When using the accelerometer sensor this automatic behavior

can be distracting. When using the accelerometer sensor it is

highly recommended to change the application to support one

layout mode only.
...
public MainPage()
{
 InitializeComponent();
 SupportedOrientations = SupportedPageOrientation.Portrait;

 }
 ...

© 2010 Haim Michael

The ReadingChanged Event

 This event is raised when the accelerometer sensor has a

new sensor reading.
...
public MainPage()
{
 InitializeComponent();
 AccelerometerSensor sensor = new AccelerometerSensor();
 sensor.ReadingChanged += new

EventHandler<AccelerometerReadingAsyncEventArgs>(MyMethodA);
 }
 ...

© 2010 Haim Michael

The Start() Method

 We start the accelerometer by calling the Start() method.
...
try
{

accelerometer.Start();
}
catch (AccelerometerStartFailedException ex)
{
 ...
}
...

© 2010 Haim Michael

The Stop() Method

 We stop the accelerometer by calling the Stop() method.
...
try
{

accelerometer.Stop();
}
catch (AccelerometerStopFailedException ex)
{
 ...
}
...

© 2010 Haim Michael

Threads Issues

 The event handler is called from another thread. It isn't

executed from the thread that draws our page.

 Using Deployment.Current.Dispatcher we can

indirectly call another method and have it executed within the

thread that draws our page.
...
void MyMethodA(object sender, AccelerometerReadingAsyncEventArgs e)
{
 Deployment.Current.Dispatcher.BeginInvoke(() => MyMethodB(e));
}
...

© 2010 Haim Michael

Threads Issues

 Within the second method we will be able to access the

sensor data during the execution of the thread that draws our

page and update the user interface accordingly.
...
void MyMethodB(object sender, AccelerometerReadingAsyncEventArgs e)
{

double x = e.Value.Value.X;
double y = e.Value.Value.Y;
double z = e.Value.Value.Z;

 ...
}
...

© 2010 Haim Michael 07/10/10

© 2010 Haim Michael 1

07/10/10 © 2010 Haim Michael 1

Accelerometer

© 2010 Haim Michael 07/10/10

© 2010 Haim Michael 2

07/10/10 © 2010 Haim Michael 2

Introduction

 The accelerometer sensor measures acceleration forces such

as gravity and the forces caused by moving the mobile

telephone.

 The Windows Phone has one accelerometer sensor at the

minimum.

© 2010 Haim Michael 07/10/10

© 2010 Haim Michael 3

07/10/10 © 2010 Haim Michael 3

The AccelerometerReading Class

 The accelerometer data is delivered to our application through

the AccelerometerReading class.

 The AccelerometerReading class includes the X, Y and Z

properties. Each one of them provides a value in between -1

and 1. These three values indicate the direction of the

acceleration for each axis.

© 2010 Haim Michael 07/10/10

© 2010 Haim Michael 4

07/10/10 © 2010 Haim Michael 4

The Microsoft.Devices.Sensors Assembly

 This assembly includes the sensor framework. In order to

develop an application that uses the sensor framework we

must add to our project a reference to this assembly.

 Once the reference to this assembly was added to our project

we can add the following using statement into our code.
...
using Microsoft.Devices.Sensors;
...

© 2010 Haim Michael 07/10/10

© 2010 Haim Michael 5

07/10/10 © 2010 Haim Michael 5

The AccelerometerSensor Class

 This is the main class we will use to access the accelerometer

sensor.
...
AccelerometerSensor sensor = new AccelerometerSensor();
...

© 2010 Haim Michael 07/10/10

© 2010 Haim Michael 6

07/10/10 © 2010 Haim Michael 6

The Portrait and Landscape Modes

 The default template generated by the Visual Studio supports

both the portrait and the landscape modes. When the user

changes the phone position it automatically changes the

display between these two modes.

...
public MainPage()
{
 InitializeComponent();
 SupportedOrientations = SupportedPageOrientation.Portrait

| SupportedPageOrientation.Landscape;
 }
 ...

© 2010 Haim Michael 07/10/10

© 2010 Haim Michael 7

07/10/10 © 2010 Haim Michael 7

The Portrait and Landscape Modes

 When using the accelerometer sensor this automatic behavior

can be distracting. When using the accelerometer sensor it is

highly recommended to change the application to support one

layout mode only.
...
public MainPage()
{
 InitializeComponent();
 SupportedOrientations = SupportedPageOrientation.Portrait;

 }
 ...

© 2010 Haim Michael 07/10/10

© 2010 Haim Michael 8

07/10/10 © 2010 Haim Michael 8

The ReadingChanged Event

 This event is raised when the accelerometer sensor has a

new sensor reading.
...
public MainPage()
{
 InitializeComponent();
 AccelerometerSensor sensor = new AccelerometerSensor();
 sensor.ReadingChanged += new

EventHandler<AccelerometerReadingAsyncEventArgs>(MyMethodA);
 }
 ...

© 2010 Haim Michael 07/10/10

© 2010 Haim Michael 9

07/10/10 © 2010 Haim Michael 9

The Start() Method

 We start the accelerometer by calling the Start() method.
...
try
{

accelerometer.Start();
}
catch (AccelerometerStartFailedException ex)
{
 ...
}
...

© 2010 Haim Michael 07/10/10

© 2010 Haim Michael 10

07/10/10 © 2010 Haim Michael 10

The Stop() Method

 We stop the accelerometer by calling the Stop() method.
...
try
{

accelerometer.Stop();
}
catch (AccelerometerStopFailedException ex)
{
 ...
}
...

© 2010 Haim Michael 07/10/10

© 2010 Haim Michael 11

07/10/10 © 2010 Haim Michael 11

Threads Issues

 The event handler is called from another thread. It isn't

executed from the thread that draws our page.

 Using Deployment.Current.Dispatcher we can

indirectly call another method and have it executed within the

thread that draws our page.
...
void MyMethodA(object sender, AccelerometerReadingAsyncEventArgs e)
{
 Deployment.Current.Dispatcher.BeginInvoke(() => MyMethodB(e));
}
...

© 2010 Haim Michael 07/10/10

© 2010 Haim Michael 12

07/10/10 © 2010 Haim Michael 12

Threads Issues

 Within the second method we will be able to access the

sensor data during the execution of the thread that draws our

page and update the user interface accordingly.
...
void MyMethodB(object sender, AccelerometerReadingAsyncEventArgs e)
{

double x = e.Value.Value.X;
double y = e.Value.Value.Y;
double z = e.Value.Value.Z;

 ...
}
...

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12

