

Architecture

 © 2011 Haim Michael. All Rights Reserved.

Applications developed using Vaadin include a web application

servlet based part, user interface components, themes that

dictate the look & feel and a data model that enables the

binding of user interface components with data sources.

Introduction

 © 2011 Haim Michael. All Rights Reserved.

When developing a Vaadin based web application we define a

class that extends com.vaadin.Application.

For each session the server maintains an object instantiated

from that class we define.

That object is responsible for creating the user interface

components and for receiving their events.

The com.vaadin.Application Class

 © 2011 Haim Michael. All Rights Reserved.

The user interface components are created and laid out by the

application.

Each server side component has a client side Java Script

based component with whom the user interacts.

The server side component communicates with its client side

component.

The User Interface Components

 © 2011 Haim Michael. All Rights Reserved.

When the user interacts with the user interface events are

created. They are first processed on the client side using

JavaScript, and then they are passed over all the way through

the HTTP server to the terminal adapter.

The terminal adapter is responsible for communicating this

data to the server side component. We can handle those

events on the server side.

User Interface Events

http://www.youtube.com/watch?v=iHC9Z3udv9A

 © 2011 Haim Michael. All Rights Reserved.

User Interface Events

package com.example.my_vaadin;
import com.vaadin.Application;
import com.vaadin.ui.*;
import com.vaadin.ui.Button.ClickEvent;
import com.vaadin.ui.Button.ClickListener;
public class My_vaadinApplication extends Application
{
 @Override
 public void init()
 {
 Window mainWindow = new Window("My_vaadin Application");
 final Label label = new Label("Hello Vaadin user");
 Button btBonga = new Button("bonga");
 Button btKaponga = new Button("kaponga");
 mainWindow.addComponent(btBonga);
 mainWindow.addComponent(btKaponga);
 mainWindow.addComponent(label);

 © 2011 Haim Michael. All Rights Reserved.

User Interface Events

 btKaponga.addListener(new ClickListener()
 {
 private static final long serialVersionUID = 1L;
 public void buttonClick(ClickEvent event)
 {
 label.setValue("kaponga");
 }
 });
 btBonga.addListener(new ClickListener()
 {
 private static final long serialVersionUID = 1L;
 public void buttonClick(ClickEvent event)
 {
 label.setValue("bonga");
 }
 });
 setMainWindow(mainWindow);

}
}

 © 2011 Haim Michael. All Rights Reserved.

User Interface Events

 © 2011 Haim Michael. All Rights Reserved.

The client side engine is responsible for rendering the user

interface. It uses the Google Web Toolkit (GWT) framework.

The client side engine communicates with the server side

Terminal Adapter and informs it about user interactions.

The client side engine uses the UIDL language when informing

the Terminal Adapter about user events. UIDL stands for User

Interface Definition Language. It is a JSON based language.

The communication is mad using asynchronous HTTP or

HTTPS requests.

Client Side Engine

 © 2011 Haim Michael. All Rights Reserved.

The controls reside on the server side. They render

themselves back to the web browser using the terminal

adapter.

The terminal adapter is an additional abstraction layer

responsible for rendering the user interface controls back to

the web browser.

Terminal Adapter

 © 2011 Haim Michael. All Rights Reserved.

The client side engine communicates with the terminal adapter

using advance asynchronous requests. The terminal adapter

passes over these requests to the relevant controls.

Terminal Adapter

 © 2011 Haim Michael. All Rights Reserved.

We can adjust the terminal adapter to work with any

technology we want. We are not limited for using the Google

Web Toolkit. It will be transparent for our application code.

Terminal Adapter

 © 2011 Haim Michael. All Rights Reserved.

While the user interface logic is handled by the code we write

in Java its presentation is handled by the themes via CSS.

Vaadin provides default themes we can use. We can develop

new ones.

The themes can include HTML templates that define a custom

layout.

The themes can include images in use by the CSS and/or the

HTML templates.

Themes

 © 2011 Haim Michael. All Rights Reserved.

The terminal adapter renders the user interface back to the

web browser using UIDL.

UIDL stands for User Interface Definition Language. It is a

JSON based language.

www.uidl.net

UIDL

http://www.uidl.net/

 © 2011 Haim Michael. All Rights Reserved.

The Vaadin framework provides us with a data model we can

use when interfacing the data the user interface components

display.

The user interface components can use that interface for

updating the application data in a direct way. We can bind a

control with a specific separated data source, such as a

specific database table.

Data Models

 © 2011 Haim Michael. All Rights Reserved.

Ajax stands for Asynchronous JavaScript and XML. It is a

technique for writing JavaScript code that interacts with the

server side and updates the user interface in an asynchronous

way.

AJAX

 © 2011 Haim Michael. All Rights Reserved.

The Google Web Toolkit (GWT) is a software development kit

for developing rich internet applications without having to use

JavaScript or other web browser technologies.

Google Web Toolkit

 © 2011 Haim Michael. All Rights Reserved.

JSON stands for JavaScript Objects Notation. It is a light

weight data interchange format we can easily generate and

parse.

Parsing JSON messages is much faster comparing with XML

ones.

JSON

 © 2011 Haim Michael. All Rights Reserved.

The Vaadin framework is implemented on top of the Java

Servlets API.

When the web container receives the first request for the URL

address the application is registered with, it instantiates the

ApplicationServlet class.

Java Servlets

ApplicationServlet

HttpServlet

 © 2011 Haim Michael. All Rights Reserved.

When the first HTTP request for our application URL arrives

the ApplicationServlet class is instantiated.

Using the HttpSession interface each session is associated

with an Application instance.

During the application lifetime each user action is related to the

proper Application instance.

Java Servlets

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

