
08/09/10 © 2008 Haim Michael. All Rights Reserved. 1

UML Sequence Diagrams

08/09/10 © 2008 Haim Michael. All Rights Reserved. 2

Introduction

The UML sequence diagrams (part of a bigger group of diagrams

called interaction diagrams) capture the communications

between the objects.

The UML interaction diagrams focuses on the messages the

objects send to each other.

08/09/10 © 2008 Haim Michael. All Rights Reserved. 3

Introduction

08/09/10 © 2008 Haim Michael. All Rights Reserved. 4

The Life Line

The life line is the dashed line coming down from each object

showing for how long the object exists.

The object notation is the rectangle from which the life line goes

down.

The sequence diagram is presented within a frame that on its top

left part we write the diagram name preceding with “sd” that

stands for “sequence diagram”.

08/09/10 © 2008 Haim Michael. All Rights Reserved. 5

The Stop Symbol

The destruction of a participant during the interaction can be

depicted using the stop symbol.

The stop symbol is a bold X.

08/09/10 © 2008 Haim Michael. All Rights Reserved. 6

The Stop Symbol

X X

08/09/10 © 2008 Haim Michael. All Rights Reserved. 7

Local Variables

In order to improve the readability of the diagram it is possible to

add local variables.

The local variables should be listed on top left part of the diagram

using the same notation used in class diagrams.

08/09/10 © 2008 Haim Michael. All Rights Reserved. 8

Local Variables

08/09/10 © 2008 Haim Michael. All Rights Reserved. 9

Messages

The communication between the objects shown in a sequence

diagram takes place via messages.

A messages can be one of the following types:
calling a specific method on the other object

sending a signal to the other object

creating an instance (the other object)

destroying the other object

A message is defined by its specific type, the sender and the

receiver.

08/09/10 © 2008 Haim Michael. All Rights Reserved. 10

Messages

When a message represents a method call we can show the

arguments been sent to that method.

Arguments been sent to a method can be any of the following:
Attributes of The Sending Object

Constants

Parameters of the Enclosing Interaction

Attributes of The Class Owning the Enclosing Interaction

Expressions

08/09/10 © 2008 Haim Michael. All Rights Reserved. 11

Messages

The message syntax is:

attribute = signal_or_operation_name(arguments)

attribute

This element is optional. If using this element please note the attribute name must be

one of the following:

+ an attribute of the lifeline sending the message

+ global attribute

+ attribute of the class that owns this interaction

+ local variable you declared

08/09/10 © 2008 Haim Michael. All Rights Reserved. 12

Asynchronous Messages

The asynchronous message is depicted using a solid line with an

open arrowhead pointing at the receiver's end.

Sending an asynchronous message means that the sender

doesn't need to wait for the reply.

08/09/10 © 2008 Haim Michael. All Rights Reserved. 13

Synchronous Messages

The synchronous message is depicted using a solid line with a

filled arrowhead pointing at the receiver's end.

Sending a synchronous message means that the sender needs

to wait for the reply.

Calling a method is usually a synchronous message.

You can show a return value using a dashed line with open arrow

pointing at the sender.

08/09/10 © 2008 Haim Michael. All Rights Reserved. 14

Object Creation

If the message represents an object creation we should use a

dashed line with an open arrow pointing a the new created

object. It is common to write above the dashed line the word

create together with the name of the instantiated class within

brackets.

create (SportCar)

08/09/10 © 2008 Haim Michael. All Rights Reserved. 15

Lost & Found Messages

A lost message is a message that was sent and never arrived its

destination. We depict such message by connecting the outgoing

line that represents its sending with a black circle.

A found message is a message that was received out of no

where without knowing who sent it. We depict such message by

connecting the incoming line that represents it with a black circle.

08/09/10 © 2008 Haim Michael. All Rights Reserved. 16

The Execution Occurrences

The execution occurrences are shown as small gray rectangles

above the life line.

They represent the fact that the object is involved with executing

the action.

08/09/10 © 2008 Haim Michael. All Rights Reserved. 17

The State Invariants

The state invariants are conditions (usually boolean expressions)

we write inside curly braces { } as labels along the life line of the

object we want to check.

The state invariant describ a condition that must be true through

the reminder of the interaction.
The reminder of the interaction is evaluated from left to right top to bottom.

Each time a message reaches a life line the state invariant is

evaluated. If the state invariant is false the execution doesn't

continue.

08/09/10 © 2008 Haim Michael. All Rights Reserved. 18

The State Invariants

08/09/10 © 2008 Haim Michael. All Rights Reserved. 19

The State Invariants

The state invariant can also be written within a note connected

with the relevant life line.

08/09/10 © 2008 Haim Michael. All Rights Reserved. 20

The State Invariants

08/09/10 © 2008 Haim Michael. All Rights Reserved. 21

The Events Occurrences

The event occurrences, the smallest part of the sequence

diagram, represent specific moments in time.

Each time that something happens it is a specific moment we

consider as an event occurrence.

We track the event occurrences from left to right... top to bottom.

In most cases, the events occurrences are messages being sent

and received.

08/09/10 © 2008 Haim Michael. All Rights Reserved. 22

Interaction Fragment

Interaction Fragment is a sequence of events occurrences.

Trace is another name for a interaction fragment.

08/09/10 © 2008 Haim Michael. All Rights Reserved. 23

Combined Fragments

Combined fragment is a group of one (or more) separated

interaction fragments.

Each combined fragment includes an operator and one or

more operand(s) it works on. Each operand is a separated

interaction fragment.

The operator specifies how to interpret the operands.

We place the combined fragment within a frame similar to the

one in use when presenting a sequence diagram.

08/09/10 © 2008 Haim Michael. All Rights Reserved. 24

Combined Fragments

08/09/10 © 2008 Haim Michael. All Rights Reserved. 25

Combined Fragments

It is possible to add a guard condition to an interaction fragment.

The condition will be written within brackets and be placed

directly above the first event occurrence life line within the

interaction fragment it refers.

08/09/10 © 2008 Haim Michael. All Rights Reserved. 26

Combined Fragments

alt

08/09/10 © 2008 Haim Michael. All Rights Reserved. 27

Combined Fragments Operators

UML specifications defines the following combined fragments

operators:
alternatives ignore / consider

option assertion

break loop

parallel

weak sequence

strict sequence

negative

critical region

08/09/10 © 2008 Haim Michael. All Rights Reserved. 28

Alternatives Interaction Fragment

An alternative interaction fragment is a choice of behavior

executes based on a guard conditions evaluation with true/false.

Top left pentagon should include the text “alt”.

08/09/10 © 2008 Haim Michael. All Rights Reserved. 29

Alternatives Interaction Fragment

08/09/10 © 2008 Haim Michael. All Rights Reserved. 30

Options Interaction Fragment

Options are interaction fragments that executes if (and only if) the

guard condition is true.

Top left pentagon should include the text “opt”.

08/09/10 © 2008 Haim Michael. All Rights Reserved. 31

Options Interaction Fragment

08/09/10 © 2008 Haim Michael. All Rights Reserved. 32

Break Interaction Fragment

Break is an interaction fragments that once executes it terminates

the enclosing interaction.

Top left pentagon should include the text “break”.

08/09/10 © 2008 Haim Michael. All Rights Reserved. 33

Break Interaction Fragment

08/09/10 © 2008 Haim Michael. All Rights Reserved. 34

Loop Interaction Fragment

Indicating that an interaction fragment, a contained event

occurrence, should be executed several times is depicted by

writing “loop” on the top left part of the combined fragment, and

by writing either a guard condition or the word loop with the

minimum and maximum number of steps written within braces.

loop (min,max)

If max is excluded then max equals min. The same apply for min

in case it is excluded.

08/09/10 © 2008 Haim Michael. All Rights Reserved. 35

Loop Interaction Fragment

The max value can be asterisk (*) to indicate an infinite loop.

If both max and min are excluded then min equals 0 and max

equals infinity.

You can add a guard condition.

08/09/10 © 2008 Haim Michael. All Rights Reserved. 36

Loop Interaction Fragment

08/09/10 © 2008 Haim Michael. All Rights Reserved. 37

Parallel Interaction Fragment

A parallel fragment means that each one of the associated

interaction fragments can be executed concurrently.

Top left pentagon should include the text “par”.

The ordering of each one of the original fragments is maintained.

08/09/10 © 2008 Haim Michael. All Rights Reserved. 38

Parallel Interaction Fragment

08/09/10 © 2008 Haim Michael. All Rights Reserved. 39

Weak Sequencing Interaction
Fragment

A weak sequencing interaction fragment (top left pentagon should

 include the text “seq”) maintains the following rules regarding the

event occurrences in each one of the operands:

Event Occurrences Ordering

If the first operand has <do_1, do_2, do_3> and the second one has <operate_1,

operate_2, operate_3> the event occurrences within each operand must always be

maintained. Having <do_1, operate_1, do_3, operate_2, operate_3, do_2> won't be

legal as do_3 comes before do_2.

08/09/10 © 2008 Haim Michael. All Rights Reserved. 40

Weak Sequencing Interaction
Fragment

Event Occurrences Ordering (Different Lifelines)

If the event occurrences are in different operands on different lifelines they can be

interleaved in any order.

Event Occurrences Ordering (The Same Lifeline)

If the even occurrences are on the same lifeline they can be interleaved as long as all

the event occurrences of the first operand execute before the occurrences of the

second operand.

08/09/10 © 2008 Haim Michael. All Rights Reserved. 41

Weak Sequencing Interaction
Fragment

08/09/10 © 2008 Haim Michael. All Rights Reserved. 42

Weak Sequencing Interaction
Fragment

08/09/10 © 2008 Haim Michael. All Rights Reserved. 43

Strict Sequencing Interaction
Fragment

The ordering of the event occurrences must be kept in all cases,

even if they happen within different separated life lines.

Top left pentagon should include the text “strict”.

The operands must be executed in order from top to bottom.

08/09/10 © 2008 Haim Michael. All Rights Reserved. 44

Negative Interaction Fragment

The event occurrences are considered invalid and the interaction

can never execute.

Top left pentagon should include the text “neg”.

08/09/10 © 2008 Haim Michael. All Rights Reserved. 45

Critical Region Interaction
Fragment

The event occurrences must be treated as an atomic block.

Top left pentagon should include the text “critical”.

08/09/10 © 2008 Haim Michael. All Rights Reserved. 46

Ignore Interaction Fragment

Using “ignore” we can specify set of messages that can be safely

ignored. We should add the “ignore” operand to the pentagon of

our fragment in the following format.

ignore {messagename1, messagename2...}

08/09/10 © 2008 Haim Michael. All Rights Reserved. 47

Ignore Interaction Fragment

08/09/10 © 2008 Haim Michael. All Rights Reserved. 48

Consider Interaction Fragment

Using “consider” we can specify the messages that are explicitly

relevant to the diagram from which we cannot ignore, while from

all others we can. If a message is shown in the consider list and

yet it doesn't show on the diagram it won't occur.

consider {messagename1, messagename2...}

08/09/10 © 2008 Haim Michael. All Rights Reserved. 49

Assertion Interaction Fragment

Using “assert” we can indicate the contained event occurrences

are the only valid execution path.

Usually, a state invariant is added.

08/09/10 © 2008 Haim Michael. All Rights Reserved. 50

Interaction Occurrences

When dealing with large interactions that include various

interactions within each other you can simplify the diagram by

drawing an interaction occurrence instead of a detailed

interaction.

The syntax for interaction occurrence includes a combined

fragment rectangle with the “ref” text on its top left and the

interaction name within the rectangle.

08/09/10 © 2008 Haim Michael. All Rights Reserved. 51

Interaction Occurrences

The interaction occurrence references a detailed interaction you

can draw in a separated diagram.

UML specifications allow sending arguments to the referenced

interaction using the following syntax:

attribute_name = interaction_name(arguments) : returned_value

08/09/10 © 2008 Haim Michael. All Rights Reserved. 52

Interaction Occurrences

08/09/10 © 2008 Haim Michael. All Rights Reserved. 53

Decomposition Interaction Diagram

UML allows linking separated interaction diagrams by adding a

decomposition reference from a specific participant to a

separated interaction diagram.

We can include within the secondary diagram input/output gates

that match the message the specific participant get and its reply.

The name of the secondary diagram will be added to the primary

diagram specific participant name prefix with “ref”.

08/09/10 © 2008 Haim Michael. All Rights Reserved. 54

Decomposition Interaction Diagram

checkout()

approval msg

. . . .

08/09/10 © 2008 Haim Michael. All Rights Reserved. 55

Continuations

Using continuations we can define different alternative branches.

The notation is a rectangle with rounded sides.

Placing a continuation in the beginning of the interaction is done

to define the behavior of that continuation.

Placing a continuation at the end of the interaction is to indicate

how the interaction should continue.

08/09/10 © 2008 Haim Michael. All Rights Reserved. 56

Continuations

When drawing the continuations they must cover the exact same

life lines, both in the diagram that defines them and in the

diagram that uses them.

08/09/10 © 2008 Haim Michael. All Rights Reserved. 57

Continuations

UML Sequence Diagram 08/09/10

© 2008 Haim Michael. All Rights Reserved. 1

08/09/10 © 2008 Haim Michael. All Rights Reserved. 1

UML Sequence Diagrams

UML Sequence Diagram 08/09/10

© 2008 Haim Michael. All Rights Reserved. 2

08/09/10 © 2008 Haim Michael. All Rights Reserved. 2

Introduction

The UML sequence diagrams (part of a bigger group of diagrams

called interaction diagrams) capture the communications

between the objects.

The UML interaction diagrams focuses on the messages the

objects send to each other.

UML Sequence Diagram 08/09/10

© 2008 Haim Michael. All Rights Reserved. 3

08/09/10 © 2008 Haim Michael. All Rights Reserved. 3

Introduction

You can note that on top left of the frame we write the sequence diagram name starting
with sd (stands for Sequence Diagram).

UML Sequence Diagram 08/09/10

© 2008 Haim Michael. All Rights Reserved. 4

08/09/10 © 2008 Haim Michael. All Rights Reserved. 4

The Life Line

The life line is the dashed line coming down from each object

showing for how long the object exists.

The object notation is the rectangle from which the life line goes

down.

The sequence diagram is presented within a frame that on its top

left part we write the diagram name preceding with “sd” that

stands for “sequence diagram”.

Please note the notation for life line might be different when dealing with other
diagrams (e.g. communication diagram).

UML Sequence Diagram 08/09/10

© 2008 Haim Michael. All Rights Reserved. 5

08/09/10 © 2008 Haim Michael. All Rights Reserved. 5

The Stop Symbol

The destruction of a participant during the interaction can be

depicted using the stop symbol.

The stop symbol is a bold X.

UML Sequence Diagram 08/09/10

© 2008 Haim Michael. All Rights Reserved. 6

08/09/10 © 2008 Haim Michael. All Rights Reserved. 6

The Stop Symbol

X X

UML Sequence Diagram 08/09/10

© 2008 Haim Michael. All Rights Reserved. 7

08/09/10 © 2008 Haim Michael. All Rights Reserved. 7

Local Variables

In order to improve the readability of the diagram it is possible to

add local variables.

The local variables should be listed on top left part of the diagram

using the same notation used in class diagrams.

UML Sequence Diagram 08/09/10

© 2008 Haim Michael. All Rights Reserved. 8

08/09/10 © 2008 Haim Michael. All Rights Reserved. 8

Local Variables

UML Sequence Diagram 08/09/10

© 2008 Haim Michael. All Rights Reserved. 9

08/09/10 © 2008 Haim Michael. All Rights Reserved. 9

Messages

The communication between the objects shown in a sequence

diagram takes place via messages.

A messages can be one of the following types:
calling a specific method on the other object

sending a signal to the other object

creating an instance (the other object)

destroying the other object

A message is defined by its specific type, the sender and the

receiver.

UML Sequence Diagram 08/09/10

© 2008 Haim Michael. All Rights Reserved. 10

08/09/10 © 2008 Haim Michael. All Rights Reserved. 10

Messages

When a message represents a method call we can show the

arguments been sent to that method.

Arguments been sent to a method can be any of the following:
Attributes of The Sending Object

Constants

Parameters of the Enclosing Interaction

Attributes of The Class Owning the Enclosing Interaction

Expressions

UML Sequence Diagram 08/09/10

© 2008 Haim Michael. All Rights Reserved. 11

08/09/10 © 2008 Haim Michael. All Rights Reserved. 11

Messages

The message syntax is:

attribute = signal_or_operation_name(arguments)

attribute

This element is optional. If using this element please note the attribute name must be

one of the following:

+ an attribute of the lifeline sending the message

+ global attribute

+ attribute of the class that owns this interaction

+ local variable you declared

UML Sequence Diagram 08/09/10

© 2008 Haim Michael. All Rights Reserved. 12

08/09/10 © 2008 Haim Michael. All Rights Reserved. 12

Asynchronous Messages

The asynchronous message is depicted using a solid line with an

open arrowhead pointing at the receiver's end.

Sending an asynchronous message means that the sender

doesn't need to wait for the reply.

UML Sequence Diagram 08/09/10

© 2008 Haim Michael. All Rights Reserved. 13

08/09/10 © 2008 Haim Michael. All Rights Reserved. 13

Synchronous Messages

The synchronous message is depicted using a solid line with a

filled arrowhead pointing at the receiver's end.

Sending a synchronous message means that the sender needs

to wait for the reply.

Calling a method is usually a synchronous message.

You can show a return value using a dashed line with open arrow

pointing at the sender.

UML Sequence Diagram 08/09/10

© 2008 Haim Michael. All Rights Reserved. 14

08/09/10 © 2008 Haim Michael. All Rights Reserved. 14

Object Creation

If the message represents an object creation we should use a

dashed line with an open arrow pointing a the new created

object. It is common to write above the dashed line the word

create together with the name of the instantiated class within

brackets.

create (SportCar)

UML Sequence Diagram 08/09/10

© 2008 Haim Michael. All Rights Reserved. 15

08/09/10 © 2008 Haim Michael. All Rights Reserved. 15

Lost & Found Messages

A lost message is a message that was sent and never arrived its

destination. We depict such message by connecting the outgoing

line that represents its sending with a black circle.

A found message is a message that was received out of no

where without knowing who sent it. We depict such message by

connecting the incoming line that represents it with a black circle.

UML Sequence Diagram 08/09/10

© 2008 Haim Michael. All Rights Reserved. 16

08/09/10 © 2008 Haim Michael. All Rights Reserved. 16

The Execution Occurrences

The execution occurrences are shown as small gray rectangles

above the life line.

They represent the fact that the object is involved with executing

the action.

UML Sequence Diagram 08/09/10

© 2008 Haim Michael. All Rights Reserved. 17

08/09/10 © 2008 Haim Michael. All Rights Reserved. 17

The State Invariants

The state invariants are conditions (usually boolean expressions)

we write inside curly braces { } as labels along the life line of the

object we want to check.

The state invariant describ a condition that must be true through

the reminder of the interaction.
The reminder of the interaction is evaluated from left to right top to bottom.

Each time a message reaches a life line the state invariant is

evaluated. If the state invariant is false the execution doesn't

continue.

UML Sequence Diagram 08/09/10

© 2008 Haim Michael. All Rights Reserved. 18

08/09/10 © 2008 Haim Michael. All Rights Reserved. 18

The State Invariants

UML Sequence Diagram 08/09/10

© 2008 Haim Michael. All Rights Reserved. 19

08/09/10 © 2008 Haim Michael. All Rights Reserved. 19

The State Invariants

The state invariant can also be written within a note connected

with the relevant life line.

UML Sequence Diagram 08/09/10

© 2008 Haim Michael. All Rights Reserved. 20

08/09/10 © 2008 Haim Michael. All Rights Reserved. 20

The State Invariants

UML Sequence Diagram 08/09/10

© 2008 Haim Michael. All Rights Reserved. 21

08/09/10 © 2008 Haim Michael. All Rights Reserved. 21

The Events Occurrences

The event occurrences, the smallest part of the sequence

diagram, represent specific moments in time.

Each time that something happens it is a specific moment we

consider as an event occurrence.

We track the event occurrences from left to right... top to bottom.

In most cases, the events occurrences are messages being sent

and received.

When a message is being sent and being received by another object we can identify two

events occurrences. The message being sent is the first and the message being received

is the second.

UML Sequence Diagram 08/09/10

© 2008 Haim Michael. All Rights Reserved. 22

08/09/10 © 2008 Haim Michael. All Rights Reserved. 22

Interaction Fragment

Interaction Fragment is a sequence of events occurrences.

Trace is another name for a interaction fragment.

Interaction fragments can be combined into combined fragments. Each combined

fragment has an operator that works on the combined fragment operand\s. The

available operators are: alternatives, option, break, parallel, weak sequence, strict,

negative, critical region, ignore/consider, assertion and loop.

We write the operand within a pentagon in the upper left of the combined fragment

rectangle.

When having more than one operand a dashed horizontal line should cross the

rectangle horizontally.

UML Sequence Diagram 08/09/10

© 2008 Haim Michael. All Rights Reserved. 23

08/09/10 © 2008 Haim Michael. All Rights Reserved. 23

Combined Fragments

Combined fragment is a group of one (or more) separated

interaction fragments.

Each combined fragment includes an operator and one or

more operand(s) it works on. Each operand is a separated

interaction fragment.

The operator specifies how to interpret the operands.

We place the combined fragment within a frame similar to the

one in use when presenting a sequence diagram.

Interaction fragments can be combined into combined fragments. Each combined

fragment has an operator that works on the combined fragment operand\s. The

available operators are: alternatives, option, break, parallel, weak sequence, strict,

negative, critical region, ignore/consider, assertion and loop.

We write the operand within a pentagon in the upper left of the combined fragment

rectangle.

When having more than one operand a dashed horizontal line should cross the

rectangle horizontally.

UML Sequence Diagram 08/09/10

© 2008 Haim Michael. All Rights Reserved. 24

08/09/10 © 2008 Haim Michael. All Rights Reserved. 24

Combined Fragments

UML Sequence Diagram 08/09/10

© 2008 Haim Michael. All Rights Reserved. 25

08/09/10 © 2008 Haim Michael. All Rights Reserved. 25

Combined Fragments

It is possible to add a guard condition to an interaction fragment.

The condition will be written within brackets and be placed

directly above the first event occurrence life line within the

interaction fragment it refers.

UML Sequence Diagram 08/09/10

© 2008 Haim Michael. All Rights Reserved. 26

08/09/10 © 2008 Haim Michael. All Rights Reserved. 26

Combined Fragments

alt

UML Sequence Diagram 08/09/10

© 2008 Haim Michael. All Rights Reserved. 27

08/09/10 © 2008 Haim Michael. All Rights Reserved. 27

Combined Fragments Operators

UML specifications defines the following combined fragments

operators:
alternatives ignore / consider

option assertion

break loop

parallel

weak sequence

strict sequence

negative

critical region

UML Sequence Diagram 08/09/10

© 2008 Haim Michael. All Rights Reserved. 28

08/09/10 © 2008 Haim Michael. All Rights Reserved. 28

Alternatives Interaction Fragment

An alternative interaction fragment is a choice of behavior

executes based on a guard conditions evaluation with true/false.

Top left pentagon should include the text “alt”.

UML Sequence Diagram 08/09/10

© 2008 Haim Michael. All Rights Reserved. 29

08/09/10 © 2008 Haim Michael. All Rights Reserved. 29

Alternatives Interaction Fragment

UML Sequence Diagram 08/09/10

© 2008 Haim Michael. All Rights Reserved. 30

08/09/10 © 2008 Haim Michael. All Rights Reserved. 30

Options Interaction Fragment

Options are interaction fragments that executes if (and only if) the

guard condition is true.

Top left pentagon should include the text “opt”.

UML Sequence Diagram 08/09/10

© 2008 Haim Michael. All Rights Reserved. 31

08/09/10 © 2008 Haim Michael. All Rights Reserved. 31

Options Interaction Fragment

UML Sequence Diagram 08/09/10

© 2008 Haim Michael. All Rights Reserved. 32

08/09/10 © 2008 Haim Michael. All Rights Reserved. 32

Break Interaction Fragment

Break is an interaction fragments that once executes it terminates

the enclosing interaction.

Top left pentagon should include the text “break”.

UML Sequence Diagram 08/09/10

© 2008 Haim Michael. All Rights Reserved. 33

08/09/10 © 2008 Haim Michael. All Rights Reserved. 33

Break Interaction Fragment

UML Sequence Diagram 08/09/10

© 2008 Haim Michael. All Rights Reserved. 34

08/09/10 © 2008 Haim Michael. All Rights Reserved. 34

Loop Interaction Fragment

Indicating that an interaction fragment, a contained event

occurrence, should be executed several times is depicted by

writing “loop” on the top left part of the combined fragment, and

by writing either a guard condition or the word loop with the

minimum and maximum number of steps written within braces.

loop (min,max)

If max is excluded then max equals min. The same apply for min

in case it is excluded.

UML Sequence Diagram 08/09/10

© 2008 Haim Michael. All Rights Reserved. 35

08/09/10 © 2008 Haim Michael. All Rights Reserved. 35

Loop Interaction Fragment

The max value can be asterisk (*) to indicate an infinite loop.

If both max and min are excluded then min equals 0 and max

equals infinity.

You can add a guard condition.

UML Sequence Diagram 08/09/10

© 2008 Haim Michael. All Rights Reserved. 36

08/09/10 © 2008 Haim Michael. All Rights Reserved. 36

Loop Interaction Fragment

UML Sequence Diagram 08/09/10

© 2008 Haim Michael. All Rights Reserved. 37

08/09/10 © 2008 Haim Michael. All Rights Reserved. 37

Parallel Interaction Fragment

A parallel fragment means that each one of the associated

interaction fragments can be executed concurrently.

Top left pentagon should include the text “par”.

The ordering of each one of the original fragments is maintained.

UML Sequence Diagram 08/09/10

© 2008 Haim Michael. All Rights Reserved. 38

08/09/10 © 2008 Haim Michael. All Rights Reserved. 38

Parallel Interaction Fragment

UML Sequence Diagram 08/09/10

© 2008 Haim Michael. All Rights Reserved. 39

08/09/10 © 2008 Haim Michael. All Rights Reserved. 39

Weak Sequencing Interaction
Fragment

A weak sequencing interaction fragment (top left pentagon should

 include the text “seq”) maintains the following rules regarding the

event occurrences in each one of the operands:

Event Occurrences Ordering

If the first operand has <do_1, do_2, do_3> and the second one has <operate_1,

operate_2, operate_3> the event occurrences within each operand must always be

maintained. Having <do_1, operate_1, do_3, operate_2, operate_3, do_2> won't be

legal as do_3 comes before do_2.

UML Sequence Diagram 08/09/10

© 2008 Haim Michael. All Rights Reserved. 40

08/09/10 © 2008 Haim Michael. All Rights Reserved. 40

Weak Sequencing Interaction
Fragment

Event Occurrences Ordering (Different Lifelines)

If the event occurrences are in different operands on different lifelines they can be

interleaved in any order.

Event Occurrences Ordering (The Same Lifeline)

If the even occurrences are on the same lifeline they can be interleaved as long as all

the event occurrences of the first operand execute before the occurrences of the

second operand.

UML Sequence Diagram 08/09/10

© 2008 Haim Michael. All Rights Reserved. 41

08/09/10 © 2008 Haim Michael. All Rights Reserved. 41

Weak Sequencing Interaction
Fragment

This diagram presents a unique weak sequencing case in which the events occurrences
in each one of the two operands occur on different lifelines. In this case they can be
interleaved in any order without any limitation.

UML Sequence Diagram 08/09/10

© 2008 Haim Michael. All Rights Reserved. 42

08/09/10 © 2008 Haim Michael. All Rights Reserved. 42

Weak Sequencing Interaction
Fragment

This diagram presents a unique weak sequencing case in which the events occurrences
in each one of the two operands occur on the same lifeline. In this case the events
occurrences of the first operand must complete before the events occurrences of the
second one are executed.

UML Sequence Diagram 08/09/10

© 2008 Haim Michael. All Rights Reserved. 43

08/09/10 © 2008 Haim Michael. All Rights Reserved. 43

Strict Sequencing Interaction
Fragment

The ordering of the event occurrences must be kept in all cases,

even if they happen within different separated life lines.

Top left pentagon should include the text “strict”.

The operands must be executed in order from top to bottom.

UML Sequence Diagram 08/09/10

© 2008 Haim Michael. All Rights Reserved. 44

08/09/10 © 2008 Haim Michael. All Rights Reserved. 44

Negative Interaction Fragment

The event occurrences are considered invalid and the interaction

can never execute.

Top left pentagon should include the text “neg”.

UML Sequence Diagram 08/09/10

© 2008 Haim Michael. All Rights Reserved. 45

08/09/10 © 2008 Haim Michael. All Rights Reserved. 45

Critical Region Interaction
Fragment

The event occurrences must be treated as an atomic block.

Top left pentagon should include the text “critical”.

UML Sequence Diagram 08/09/10

© 2008 Haim Michael. All Rights Reserved. 46

08/09/10 © 2008 Haim Michael. All Rights Reserved. 46

Ignore Interaction Fragment

Using “ignore” we can specify set of messages that can be safely

ignored. We should add the “ignore” operand to the pentagon of

our fragment in the following format.

ignore {messagename1, messagename2...}

UML Sequence Diagram 08/09/10

© 2008 Haim Michael. All Rights Reserved. 47

08/09/10 © 2008 Haim Michael. All Rights Reserved. 47

Ignore Interaction Fragment

UML Sequence Diagram 08/09/10

© 2008 Haim Michael. All Rights Reserved. 48

08/09/10 © 2008 Haim Michael. All Rights Reserved. 48

Consider Interaction Fragment

Using “consider” we can specify the messages that are explicitly

relevant to the diagram from which we cannot ignore, while from

all others we can. If a message is shown in the consider list and

yet it doesn't show on the diagram it won't occur.

consider {messagename1, messagename2...}

UML Sequence Diagram 08/09/10

© 2008 Haim Michael. All Rights Reserved. 49

08/09/10 © 2008 Haim Michael. All Rights Reserved. 49

Assertion Interaction Fragment

Using “assert” we can indicate the contained event occurrences

are the only valid execution path.

Usually, a state invariant is added.

UML Sequence Diagram 08/09/10

© 2008 Haim Michael. All Rights Reserved. 50

08/09/10 © 2008 Haim Michael. All Rights Reserved. 50

Interaction Occurrences

When dealing with large interactions that include various

interactions within each other you can simplify the diagram by

drawing an interaction occurrence instead of a detailed

interaction.

The syntax for interaction occurrence includes a combined

fragment rectangle with the “ref” text on its top left and the

interaction name within the rectangle.

UML Sequence Diagram 08/09/10

© 2008 Haim Michael. All Rights Reserved. 51

08/09/10 © 2008 Haim Michael. All Rights Reserved. 51

Interaction Occurrences

The interaction occurrence references a detailed interaction you

can draw in a separated diagram.

UML specifications allow sending arguments to the referenced

interaction using the following syntax:

attribute_name = interaction_name(arguments) : returned_value

attribute_name
The attribute_name is an attribute in which we want to enter the returned value. This is an
optional syntax.

occurrence
When dealing with very big diagrams in which the same interaction occurrence might be
shown more than once it can be a good idea to reference each occurrence with a
difference occurrence name. This is an optional syntax.

interation_name
This is the name of the interaction the interaction occurrence represents.

arguments
This is a comma-separated list of arguments passed to the referenced interaction. You
can prefix each argument with in/out/inout keyword in order to indicate whether the
argument is used to get a value returned from the reference interaction.

returned_value
This is an optional part that indicates about the value returned from the referenced
interaction.

UML Sequence Diagram 08/09/10

© 2008 Haim Michael. All Rights Reserved. 52

08/09/10 © 2008 Haim Michael. All Rights Reserved. 52

Interaction Occurrences

UML Sequence Diagram 08/09/10

© 2008 Haim Michael. All Rights Reserved. 53

08/09/10 © 2008 Haim Michael. All Rights Reserved. 53

Decomposition Interaction Diagram

UML allows linking separated interaction diagrams by adding a

decomposition reference from a specific participant to a

separated interaction diagram.

We can include within the secondary diagram input/output gates

that match the message the specific participant get and its reply.

The name of the secondary diagram will be added to the primary

diagram specific participant name prefix with “ref”.

UML Sequence Diagram 08/09/10

© 2008 Haim Michael. All Rights Reserved. 54

08/09/10 © 2008 Haim Michael. All Rights Reserved. 54

Decomposition Interaction Diagram

checkout()

approval msg

. . . .

UML Sequence Diagram 08/09/10

© 2008 Haim Michael. All Rights Reserved. 55

08/09/10 © 2008 Haim Michael. All Rights Reserved. 55

Continuations

Using continuations we can define different alternative branches.

The notation is a rectangle with rounded sides.

Placing a continuation in the beginning of the interaction is done

to define the behavior of that continuation.

Placing a continuation at the end of the interaction is to indicate

how the interaction should continue.

UML Sequence Diagram 08/09/10

© 2008 Haim Michael. All Rights Reserved. 56

08/09/10 © 2008 Haim Michael. All Rights Reserved. 56

Continuations

When drawing the continuations they must cover the exact same

life lines, both in the diagram that defines them and in the

diagram that uses them.

UML Sequence Diagram 08/09/10

© 2008 Haim Michael. All Rights Reserved. 57

08/09/10 © 2008 Haim Michael. All Rights Reserved. 57

Continuations

In this diagram the two continuations “Login Succeed” and “Login Fail” are used. They
represent the events occurrences that should happen in accordance with each one of the
two cases (the two operands).

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57

