
© 2008 Haim Michael. All Rights Reserved.

UML Package Diagrams



© 2008 Haim Michael. All Rights Reserved.

Introduction

The UML Package Diagram presents separated groups of 

elements. 

Nearly all UML elements can be grouped into packages.

Each package has a separated name space. Referring an 

element that belongs to a specific package from outside of that 

package must include the package name preceding the element 

name we try to refer. 



© 2008 Haim Michael. All Rights Reserved.

Introduction

Technically we can use the package construct to organize any 

type of UML elements.

The package construct is usually used to organize classes in the 

following cases:
Classes that belong to the same framework will be placed in the same package.

Classes in the same inheritance hierarchy usually belong to the same package.

Classes that have the aggregation / composition relationship with each other usually 

belong to the same package.



© 2008 Haim Michael. All Rights Reserved.

Package Representation

Depicting a package is done using a rectangle that has a tab 

attached to its top left. 



© 2008 Haim Michael. All Rights Reserved.

Package Representation

Within the package we can draw the elements it includes. 

When doing so, it is possible to write the package name within 

the package top left tab.



© 2008 Haim Michael. All Rights Reserved.

Package Representation

Alternatively, it is possible to draw each one of the elements 

outside of the package area and connect each one of them with 

the package using a solid line and a small circle with a plus sign 

in it at the end nearest the package.



© 2008 Haim Michael. All Rights Reserved.

Package Representation



© 2008 Haim Michael. All Rights Reserved.

Package Elements Visibility

Each element within a package can have one of the following two 

visibility levels:

Private

The element can be used by other elements that belong to the same package only. A 

private element will be marked with '-'.

Public

The element can be used by all elements from all packages. A public element will be 

marked with '+'.



© 2008 Haim Michael. All Rights Reserved.

Package Elements Visibility



© 2008 Haim Michael. All Rights Reserved.

Importing Packages

In order to avoid the full qualified names when accessing 

elements that belong to another package, UML allows importing 

one package to another.

When a package is imported to another package, all elements of 

the imported package are accessible without having the need to 

use the full qualified name. 

Done by drawing a dashed line between the two packages and 

an open arrow pointing at the imported package.



© 2008 Haim Michael. All Rights Reserved.

Importing Packages



© 2008 Haim Michael. All Rights Reserved.

Importing Packages

By default, when a package imports another package, all 

elements that belong to the imported package are given a public 

visibility within the importing package. As a result of that, if a third 

package imports the importing package all elements that belong 

to the first imported package are now accessible both from within 

the first importing package and from within the second one. 



© 2008 Haim Michael. All Rights Reserved.

Importing Packages

All public elements that belong to AI Modules become 
public within Games. As a result of that, given that 
Mobile Games import Games, the AI Modules 
elements are accessible both from Games and from 
Mobile Games packages. Private members cannot be 
imported. 



© 2008 Haim Michael. All Rights Reserved.

Accessing Packages

If using <<access>> instead of <<import>> then elements that 

belong to a package that another package now accesses get the 

private accessibility, which means that a third package that 

imports from the accessing package won't be able to use these 

elements.



© 2008 Haim Michael. All Rights Reserved.

Accessing Packages

All private elements that belong to AI Modules remain 
private elements that belong to AI Modules. None of 
these elements is copied to Games. None of these 
elements can be accessed from within Mobile Games 
or from Games. The public elements that belong to AI 
Modules become accessible for Games as private 
ones only. They aren't accessible from Mobile Games.



© 2008 Haim Michael. All Rights Reserved.

Merging Packages

When two packages merge with each other then elements with 

the same name are merged. The elements that belong to the 

package that performs the merge with the other package get a 

generalization relationship with the other class.

Private members from any given package are not merged with 

any other package. 

If the two merged packages include a sub package with the same 

name a merge process will start between the two sub packages 

as well.



© 2008 Haim Michael. All Rights Reserved.

Merging Packages

Referencing the original elements in the merged package is still 

feasible by using the full qualified name.
e.g.  Assuming that package ComputerProtocols merges with HumanProtocols 

reference the original elements of HumanProtocols is still feasible using the full 

qualified name that includes the HumanProtocols package name.

Elements and sub packages that exist only in one of the two 

merging packages will remain unchanged. 

Any import from the merged package becomes an import from 

the merging package.  



© 2008 Haim Michael. All Rights Reserved.

Merging Packages



© 2008 Haim Michael. All Rights Reserved.

Use Case Packages

Taking use cases and placing

them in packages can improve 

the clarity of the use case 

diagram. 



© 2008 Haim Michael. All Rights Reserved.

Packages Dependencies Graph

Having one diagram that includes all  packages that we plan to 

have in our system together with dashed open arrow lines 

connecting between them and representing the direct 

dependencies can assist us planning our project development in 

a more efficient way.

Having all dependencies flowing in one direction is a good sign 

for less complexity during the developing process.



© 2008 Haim Michael. All Rights Reserved.

Packages Dependencies Graph



UML Packages Diagram 02/20/10

© 2008 Haim Michael. All Rights Reserved. 1

02/20/10 © 2008 Haim Michael. All Rights Reserved. 1

UML Package Diagrams



UML Packages Diagram 02/20/10

© 2008 Haim Michael. All Rights Reserved. 2

02/20/10 © 2008 Haim Michael. All Rights Reserved. 2

Introduction

The UML Package Diagram presents separated groups of 

elements. 

Nearly all UML elements can be grouped into packages.

Each package has a separated name space. Referring an 

element that belongs to a specific package from outside of that 

package must include the package name preceding the element 

name we try to refer. 

    Assuming that we set up the “Toys” package and inside that 
package we have the “Lego” element. In order to refer 
“Lego” from outside of the “Toys” package we will need to 
use the full qualified name Toys::Lego



UML Packages Diagram 02/20/10

© 2008 Haim Michael. All Rights Reserved. 3

02/20/10 © 2008 Haim Michael. All Rights Reserved. 3

Introduction

Technically we can use the package construct to organize any 

type of UML elements.

The package construct is usually used to organize classes in the 

following cases:
Classes that belong to the same framework will be placed in the same package.

Classes in the same inheritance hierarchy usually belong to the same package.

Classes that have the aggregation / composition relationship with each other usually 

belong to the same package.



UML Packages Diagram 02/20/10

© 2008 Haim Michael. All Rights Reserved. 4

02/20/10 © 2008 Haim Michael. All Rights Reserved. 4

Package Representation

Depicting a package is done using a rectangle that has a tab 

attached to its top left. 



UML Packages Diagram 02/20/10

© 2008 Haim Michael. All Rights Reserved. 5

02/20/10 © 2008 Haim Michael. All Rights Reserved. 5

Package Representation

Within the package we can draw the elements it includes. 

When doing so, it is possible to write the package name within 

the package top left tab.



UML Packages Diagram 02/20/10

© 2008 Haim Michael. All Rights Reserved. 6

02/20/10 © 2008 Haim Michael. All Rights Reserved. 6

Package Representation

Alternatively, it is possible to draw each one of the elements 

outside of the package area and connect each one of them with 

the package using a solid line and a small circle with a plus sign 

in it at the end nearest the package.



UML Packages Diagram 02/20/10

© 2008 Haim Michael. All Rights Reserved. 7

02/20/10 © 2008 Haim Michael. All Rights Reserved. 7

Package Representation

    
The advantage drawing the elements outside of the package 
area is the possibility to draw these elements with more details.



UML Packages Diagram 02/20/10

© 2008 Haim Michael. All Rights Reserved. 8

02/20/10 © 2008 Haim Michael. All Rights Reserved. 8

Package Elements Visibility

Each element within a package can have one of the following two 

visibility levels:

Private

The element can be used by other elements that belong to the same package only. A 

private element will be marked with '-'.

Public

The element can be used by all elements from all packages. A public element will be 

marked with '+'.



UML Packages Diagram 02/20/10

© 2008 Haim Michael. All Rights Reserved. 9

02/20/10 © 2008 Haim Michael. All Rights Reserved. 9

Package Elements Visibility

    
All elements within the Toys package have the public 
accessibility level except for AI. The AI element is private. 
Therefore, only the elements within Toys package can use it.



UML Packages Diagram 02/20/10

© 2008 Haim Michael. All Rights Reserved. 10

02/20/10 © 2008 Haim Michael. All Rights Reserved. 10

Importing Packages

In order to avoid the full qualified names when accessing 

elements that belong to another package, UML allows importing 

one package to another.

When a package is imported to another package, all elements of 

the imported package are accessible without having the need to 

use the full qualified name. 

Done by drawing a dashed line between the two packages and 

an open arrow pointing at the imported package.



UML Packages Diagram 02/20/10

© 2008 Haim Michael. All Rights Reserved. 11

02/20/10 © 2008 Haim Michael. All Rights Reserved. 11

Importing Packages



UML Packages Diagram 02/20/10

© 2008 Haim Michael. All Rights Reserved. 12

02/20/10 © 2008 Haim Michael. All Rights Reserved. 12

Importing Packages

By default, when a package imports another package, all 

elements that belong to the imported package are given a public 

visibility within the importing package. As a result of that, if a third 

package imports the importing package all elements that belong 

to the first imported package are now accessible both from within 

the first importing package and from within the second one. 



UML Packages Diagram 02/20/10

© 2008 Haim Michael. All Rights Reserved. 13

02/20/10 © 2008 Haim Michael. All Rights Reserved. 13

Importing Packages

All public elements that belong to AI Modules become 
public within Games. As a result of that, given that 
Mobile Games import Games, the AI Modules 
elements are accessible both from Games and from 
Mobile Games packages. Private members cannot be 
imported. 



UML Packages Diagram 02/20/10

© 2008 Haim Michael. All Rights Reserved. 14

02/20/10 © 2008 Haim Michael. All Rights Reserved. 14

Accessing Packages

If using <<access>> instead of <<import>> then elements that 

belong to a package that another package now accesses get the 

private accessibility, which means that a third package that 

imports from the accessing package won't be able to use these 

elements.



UML Packages Diagram 02/20/10

© 2008 Haim Michael. All Rights Reserved. 15

02/20/10 © 2008 Haim Michael. All Rights Reserved. 15

Accessing Packages

All private elements that belong to AI Modules remain 
private elements that belong to AI Modules. None of 
these elements is copied to Games. None of these 
elements can be accessed from within Mobile Games 
or from Games. The public elements that belong to AI 
Modules become accessible for Games as private 
ones only. They aren't accessible from Mobile Games.



UML Packages Diagram 02/20/10

© 2008 Haim Michael. All Rights Reserved. 16

02/20/10 © 2008 Haim Michael. All Rights Reserved. 16

Merging Packages

When two packages merge with each other then elements with 

the same name are merged. The elements that belong to the 

package that performs the merge with the other package get a 

generalization relationship with the other class.

Private members from any given package are not merged with 

any other package. 

If the two merged packages include a sub package with the same 

name a merge process will start between the two sub packages 

as well.



UML Packages Diagram 02/20/10

© 2008 Haim Michael. All Rights Reserved. 17

02/20/10 © 2008 Haim Michael. All Rights Reserved. 17

Merging Packages

Referencing the original elements in the merged package is still 

feasible by using the full qualified name.
e.g.  Assuming that package ComputerProtocols merges with HumanProtocols 

reference the original elements of HumanProtocols is still feasible using the full 

qualified name that includes the HumanProtocols package name.

Elements and sub packages that exist only in one of the two 

merging packages will remain unchanged. 

Any import from the merged package becomes an import from 

the merging package.  



UML Packages Diagram 02/20/10

© 2008 Haim Michael. All Rights Reserved. 18

02/20/10 © 2008 Haim Michael. All Rights Reserved. 18

Merging Packages



UML Packages Diagram 02/20/10

© 2008 Haim Michael. All Rights Reserved. 19

02/20/10 © 2008 Haim Michael. All Rights Reserved. 19

Use Case Packages

Taking use cases and placing

them in packages can improve 

the clarity of the use case 

diagram. 



UML Packages Diagram 02/20/10

© 2008 Haim Michael. All Rights Reserved. 20

02/20/10 © 2008 Haim Michael. All Rights Reserved. 20

Packages Dependencies Graph

Having one diagram that includes all  packages that we plan to 

have in our system together with dashed open arrow lines 

connecting between them and representing the direct 

dependencies can assist us planning our project development in 

a more efficient way.

Having all dependencies flowing in one direction is a good sign 

for less complexity during the developing process.



UML Packages Diagram 02/20/10

© 2008 Haim Michael. All Rights Reserved. 21

02/20/10 © 2008 Haim Michael. All Rights Reserved. 21

Packages Dependencies Graph


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

