
© 2008 Haim Michael. All Rights Reserved.

Object Oriented Concepts

© 2008 Haim Michael. All Rights Reserved.

What is an Object?

“Object. An abstraction of something in a problem domain,

reflecting the capabilities of the system to keep information

about it, interact with it, or both.” (Coad and Yourdon, 1990)

“We define an object as a concept, abstraction, or thing with

crisp boundaries and meaning for the problem at hand. Objects

serve two purposes: They promote understanding of the real

world and provide a practical basis for computer

implementation.” (Rumbaugh et al, 1991)

© 2008 Haim Michael. All Rights Reserved.

Classes & Objects

“A class is the general template we use to define and create

specific instances, or objects. Every object is associated with a

class. An object is instantiation of a class.” (Alan Dennis, 2006)

“Class is a concept that describes a set of objects that are

specified in the same way. All objects of a given class share a

common specification for their features, their semantics and the

constraints upon them.” (OMG, 2004)

© 2008 Haim Michael. All Rights Reserved.

Classes & Objects

Each attribute that was defined in our class exists in each one

of objects that were instantiated from it. Each object has the

same attributes with possible different values.
The information can be anything we can think of, such as a student name, birthday,

address and phone number. The attributes

Each operation that was defined in our class can be called on

each one of the objects that were instantiated from it.
When calling a method on a specific object the method uses the values that object

holds in its attributes.

© 2008 Haim Michael. All Rights Reserved.

Classes & Objects

instantiation

© 2008 Haim Michael. All Rights Reserved.

Generalization

“Generalization occurs where there is a taxonomic relationship

between two classes. This means that the specification of one

class is more general and applies also to the other class, while

the specification of the latter is more specific and includes some

details that do not apply to the former.” (OMG, 2004)

“In other words, any instance of the more specific class is also indirectly an instance

of the more general class. The more specific class inherits all features of the more

general one, while also adding some features that are uniquely its own.” (OMG, 2004)

© 2008 Haim Michael. All Rights Reserved.

Inheritance

“Inheritance is the mechanism for implementing generalization

and specialization in an object oriented programming

language.” (Simon Bennett, 2006)

When two classes are related by the mechanism of inheritance, the more general

class is called a superclass in relation to the other, and the more specialized one is

called its subclass.

© 2008 Haim Michael. All Rights Reserved.

Inheritance

© 2008 Haim Michael. All Rights Reserved.

Polymorphism

“Polymorphism literally means 'an ability to appear as many

forms' and it refers to the possibility of identical messages being

sent to objects of different classes, each of which responds to

the message in a different, yet still appropriate, way. Each

receiving object is responsible for knowing how to respond to

each message it receives.” (Simon Bennett, 2006)

© 2008 Haim Michael. All Rights Reserved.

Polymorphism

© 2008 Haim Michael. All Rights Reserved.

Interfaces

Interface is that part of the boundary between two interacting

systems across which they communicate. Interface is the set of

all signatures for the public operations of a class, component,

application or a whole system.

© 2008 Haim Michael. All Rights Reserved.

Interfaces

© 2008 Haim Michael. All Rights Reserved.

Abstract Class

An abstract class is a class that we cannot instantiate. It is a

super-class that acts only as a generalized template for its

instantiated subclasses.

© 2008 Haim Michael. All Rights Reserved.

Abstract Class

© 2008 Haim Michael. All Rights Reserved.

Design Patterns

“Each pattern describes a problem which occurs over and over

again in our environment, and then describes the core of the

solution to that problem, in such a way that you can use this

solution a million times over, without ever doing it the same way

twice” (Christopher Alexander, 1977)

© 2008 Haim Michael. All Rights Reserved.

Software Design Patterns

“Software patterns are reusable solutions to recurring problems

that we encounter during software development.” (Mark Grand, 2002)

© 2008 Haim Michael. All Rights Reserved.

Software Design Patterns History

The idea of using patterns evolves from the architecture

discipline.
Christopher Alexander refer to patterns in the architecture discipline in his book “A

Pattern Language”, that was published via Oxford University Press in 1977.

The first GUI software patterns were set in 1987.
Those patterns were set by Ward Cunningham and Kent Beck via their “Using

Pattern Languages for Object-Oriented Programs” book.

© 2008 Haim Michael. All Rights Reserved.

Software Design Patterns History

The Gang of Four (AKA GOF) publish their “Design Patterns”

book in 1994.
Erich Gamma, Richard Helm, John Vlissides, and Ralph Johnson work together and

publish the “Design Patterns” book via Addison Wesley publishing house in 1994.

Their books sets the fundamental classic design patterns we all know.

Concurrently with Java EE development, new design patterns

are set.
A detailed catalog of these patterns together with code samples and detailed tutorials

can be found at http://java.sun.com/blueprints/patterns/index.html.

http://java.sun.com/blueprints/patterns/index.html

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

