
UML Composite Structure Diagrams

08/09/10 © Abelski eLearning 2

Introduction
Similarly to UML Component Diagram, the UML Composite

Structure Diagram focuses on showing the internal structure of a

specific classifier.

Many of the notations known from UML Component Diagram can

be used within a UML Composite Diagram as well.

While the purpose of the Component Diagram is showing the

internal structure, the purpose of the Composite Structure

Diagram is showing how a specific funcionality is implemented.

08/09/10 © Abelski eLearning 3

Introduction

08/09/10 © Abelski eLearning 4

Connectors
A connector represents a communication link between two

objects.

A connector can be an object that represents an association

or a value we hold in a variable. A value held in a variable is

another way to represent a connection between two objects.

08/09/10 © Abelski eLearning 5

Connectors
The notation for connector is a solid line. For each connector we

can provide a name and a type in the following format:

name:classname

name
The name of the connector
classname
The name of the class that was instantiated to represent an association. Relevant when

the connector represents a link between two objects... a link that is represented by

object of a specific class... an object that represents the link as an association.

08/09/10 © Abelski eLearning 6

Connectors

08/09/10 © Abelski eLearning 7

More Information
Using a simple note it is possible to provide more information

about the connector, which means: more information about the

communication between the two elements (performed via the

connector).

08/09/10 © Abelski eLearning 8

Connector's Multiplicity
Using the formal multiplicity syntax it is possible to specify the

multiplicity of each connector end.

08/09/10 © Abelski eLearning 9

The Ports
A port is a way to offer functionality from a composite structure

without exposing details about that composite structure internal

implementation.

The port notation is a small square drawn above the edge line of

the boarder.

The port name and its multiplicity are written near to it.

08/09/10 © Abelski eLearning 10

The Ports

08/09/10 © Abelski eLearning 11

Required and Provided Interfaces
The ports are associated with required/provided interfaces

from/to the environment.
Example:

An ATM machine might provide an interface to withdraw money... at the same time it

might require an interface to the bank system through which the withdraw could be

approved and updated on the bank system data base.

08/09/10 © Abelski eLearning 12

Required and Provided Interfaces
The required/provided interfaces are usually depicted using the

following notation:

The
Required
Interface

The Provided
Interface

08/09/10 © Abelski eLearning 13

Required and Provided Interfaces
If there are multiple required/provided interfaces we can write

them comma separated near the relevant socket/ball.

08/09/10 © Abelski eLearning 14

Ports Implementation
Each port is wired to its internal implementation using

connectors.

The internal implementation can be some code owned by the

classifier (this is usually the case when dealing with small

classes). In such case the port will be named “Behavioral Port”.

If the implementation of the port is done by another inner element

then we will link the port to its internal implementation.

08/09/10 © Abelski eLearning 15

Ports Implementation

08/09/10 © Abelski eLearning 16

One Port & Multiple Connectors
UML specification allows having one port connected with multiple

connectors.

When this is the case it is important to add a note with

explanation about how does the data that arrives from the

environment continues its flow to the connectors... is it duplicated

for each connector.. is there a mechanism that selects which data

to forward through which connector.. etc.

08/09/10 © Abelski eLearning 17

One Port & Multiple Connectors

08/09/10 © Abelski eLearning 18

Multiple Ports
Having more than one port for providing/receiving the same

interface/s is feasible. In such case we will specify the number of

ports near the port notation.

Having multiple ports can happen when we have two instances of

two different classes that both of them implement the interface

that was declared for that port (e.g. AuthenticationInterface was

implemented twice... first in a class that authenticates regular

customers... and second is a class that authenticates premium

customers.

08/09/10 © Abelski eLearning 19

Multiple Ports

08/09/10 © Abelski eLearning 20

Ports' Types
When the port is instantiated we can mention the class type from

which it was instantiated.

08/09/10 © Abelski eLearning 21

Structured Classes & Properties
It is possible to specify the initial values for each object.

08/09/10 © Abelski eLearning 22

Structured Classes & Properties

08/09/10 © Abelski eLearning 23

Structured Classes & Properties
It is possible to show that the object was created using a specific

constructor of the classifier by using a dependency line labeled

with the <<create>> keyword and use it to connect the object

with that specific constructor.

08/09/10 © Abelski eLearning 24

Structured Classes & Properties

<<create>>

08/09/10 © Abelski eLearning 25

Collaboration
Organizing the elements in order to realize a behavior is called

Collaboration. Such collection of instances is wired together

using connectors to show the communication flow.

Within the collaboration we name each involved instance with a

name based on its role (not its class type).

A collaboration is depicted using a dashed eclipse. The name we

give that collaboration is written within that eclipse.

08/09/10 © Abelski eLearning 26

Collaboration
Observer / Observable

Observer:Player Observable:Coach5

08/09/10 © Abelski eLearning 27

Collaboration
Alternatively, we can draw a smaller collaboration eclipse and

depict the two instances outside of the eclipse and tie them with

the eclipse using communication links. When doing so, the role

name will be written above each one of the communication links

(instead of writing it within the instance rectangle).

Choosing this alternative approach we can also have more space

to include a list of all members (fields & methods) for each one of

the objects.

08/09/10 © Abelski eLearning 28

Collaboration

Observer / Observable

Observer:Player Observable:Basketball

Observer Observerable

08/09/10 © Abelski eLearning 29

Collaboration Occurrence
A collaboration occurrence is kind of an instance of collaboration.

This way, if a given collaboration already exists and we find that

same collaboration made up as a sub system of other objects we

can consider it as a collaboration occurrence.

When using collaboration occurrence we can assign role names

to internal elements of the classifier. This is very helpful given

that there may be multiple occurrences of a particular

collaboration.

08/09/10 © Abelski eLearning 30

Collaboration Occurrence
Showing more than one collaboration occurrence in the same

diagram can be done by drawing the collaboration as a small

dashed eclipse and drawing dashed lines from that eclipse to

each element that takes part fulfilling a specific role in the

collaboration.

08/09/10 © Abelski eLearning 31

Collaboration Occurrence

Playing:Observer/Observable

:Player

:BasketballObserver

Observerable

:Coach5

ObserverTraining:Observer/Observable

Observerable

TeamPlayer

© Zindell Technologies, Ltd. 08/09/10

© Abelski eLearning 1

08/09/10 © Abelski eLearning 1

UML Composite Structure Diagrams

© Zindell Technologies, Ltd. 08/09/10

© Abelski eLearning 2

08/09/10 © Abelski eLearning 2

Introduction
Similarly to UML Component Diagram, the UML Composite

Structure Diagram focuses on showing the internal structure of a

specific classifier.

Many of the notations known from UML Component Diagram can

be used within a UML Composite Diagram as well.

While the purpose of the Component Diagram is showing the

internal structure, the purpose of the Composite Structure

Diagram is showing how a specific funcionality is implemented.

The component and the composite structure seem to be very similar. What is the

difference between these two diagram types?

Component Diagram

"Set of constructs that can be used to define software systems of arbitrary size

and complexity” (UML Specification). Using the Component Diagram fits those

cases in which we analyze the system from a component-based development

perspective.

Composite Structure Diagram

”A composite structure diagram depicts the internal structure of a classifier.” (UML

Specification). We will use the composite structure diagram when we focus on a

specific composition of interconnected elements, representing run-time instances.

© Zindell Technologies, Ltd. 08/09/10

© Abelski eLearning 3

08/09/10 © Abelski eLearning 3

Introduction

© Zindell Technologies, Ltd. 08/09/10

© Abelski eLearning 4

08/09/10 © Abelski eLearning 4

Connectors
A connector represents a communication link between two

objects.

A connector can be an object that represents an association

or a value we hold in a variable. A value held in a variable is

another way to represent a connection between two objects.

© Zindell Technologies, Ltd. 08/09/10

© Abelski eLearning 5

08/09/10 © Abelski eLearning 5

Connectors
The notation for connector is a solid line. For each connector we

can provide a name and a type in the following format:
name:classname

name
The name of the connector
classname
The name of the class that was instantiated to represent an association. Relevant when

the connector represents a link between two objects... a link that is represented by

object of a specific class... an object that represents the link as an association.

© Zindell Technologies, Ltd. 08/09/10

© Abelski eLearning 6

08/09/10 © Abelski eLearning 6

Connectors

The connection between the two objects exists between their two classes as
association. Therefore, the connector is an object. In this case, it is an object of
type Network and the object name is internet.

© Zindell Technologies, Ltd. 08/09/10

© Abelski eLearning 7

08/09/10 © Abelski eLearning 7

More Information
Using a simple note it is possible to provide more information

about the connector, which means: more information about the

communication between the two elements (performed via the

connector).

© Zindell Technologies, Ltd. 08/09/10

© Abelski eLearning 8

08/09/10 © Abelski eLearning 8

Connector's Multiplicity
Using the formal multiplicity syntax it is possible to specify the

multiplicity of each connector end.

© Zindell Technologies, Ltd. 08/09/10

© Abelski eLearning 9

08/09/10 © Abelski eLearning 9

The Ports
A port is a way to offer functionality from a composite structure

without exposing details about that composite structure internal

implementation.

The port notation is a small square drawn above the edge line of

the boarder.

The port name and its multiplicity are written near to it.

© Zindell Technologies, Ltd. 08/09/10

© Abelski eLearning 10

08/09/10 © Abelski eLearning 10

The Ports

© Zindell Technologies, Ltd. 08/09/10

© Abelski eLearning 11

08/09/10 © Abelski eLearning 11

Required and Provided Interfaces
The ports are associated with required/provided interfaces

from/to the environment.
Example:

An ATM machine might provide an interface to withdraw money... at the same time it

might require an interface to the bank system through which the withdraw could be

approved and updated on the bank system data base.

© Zindell Technologies, Ltd. 08/09/10

© Abelski eLearning 12

08/09/10 © Abelski eLearning 12

Required and Provided Interfaces
The required/provided interfaces are usually depicted using the

following notation:

The
Required
Interface

The Provided
Interface

© Zindell Technologies, Ltd. 08/09/10

© Abelski eLearning 13

08/09/10 © Abelski eLearning 13

Required and Provided Interfaces
If there are multiple required/provided interfaces we can write

them comma separated near the relevant socket/ball.

© Zindell Technologies, Ltd. 08/09/10

© Abelski eLearning 14

08/09/10 © Abelski eLearning 14

Ports Implementation
Each port is wired to its internal implementation using

connectors.

The internal implementation can be some code owned by the

classifier (this is usually the case when dealing with small

classes). In such case the port will be named “Behavioral Port”.

If the implementation of the port is done by another inner element

then we will link the port to its internal implementation.

© Zindell Technologies, Ltd. 08/09/10

© Abelski eLearning 15

08/09/10 © Abelski eLearning 15

Ports Implementation

© Zindell Technologies, Ltd. 08/09/10

© Abelski eLearning 16

08/09/10 © Abelski eLearning 16

One Port & Multiple Connectors
UML specification allows having one port connected with multiple

connectors.

When this is the case it is important to add a note with

explanation about how does the data that arrives from the

environment continues its flow to the connectors... is it duplicated

for each connector.. is there a mechanism that selects which data

to forward through which connector.. etc.

© Zindell Technologies, Ltd. 08/09/10

© Abelski eLearning 17

08/09/10 © Abelski eLearning 17

One Port & Multiple Connectors

© Zindell Technologies, Ltd. 08/09/10

© Abelski eLearning 18

08/09/10 © Abelski eLearning 18

Multiple Ports
Having more than one port for providing/receiving the same

interface/s is feasible. In such case we will specify the number of

ports near the port notation.

Having multiple ports can happen when we have two instances of

two different classes that both of them implement the interface

that was declared for that port (e.g. AuthenticationInterface was

implemented twice... first in a class that authenticates regular

customers... and second is a class that authenticates premium

customers.

© Zindell Technologies, Ltd. 08/09/10

© Abelski eLearning 19

08/09/10 © Abelski eLearning 19

Multiple Ports

© Zindell Technologies, Ltd. 08/09/10

© Abelski eLearning 20

08/09/10 © Abelski eLearning 20

Ports' Types
When the port is instantiated we can mention the class type from

which it was instantiated.

© Zindell Technologies, Ltd. 08/09/10

© Abelski eLearning 21

08/09/10 © Abelski eLearning 21

Structured Classes & Properties
It is possible to specify the initial values for each object.

The multiplicity can be reflected by drawing the number in the
rectangle upper right corner or after the property name (in
brackets).

© Zindell Technologies, Ltd. 08/09/10

© Abelski eLearning 22

08/09/10 © Abelski eLearning 22

Structured Classes & Properties

The dashed/solid rectangle option replaces the special notation
used in class diagram to represent composition, aggregation &
association

© Zindell Technologies, Ltd. 08/09/10

© Abelski eLearning 23

08/09/10 © Abelski eLearning 23

Structured Classes & Properties
It is possible to show that the object was created using a specific

constructor of the classifier by using a dependency line labeled

with the <<create>> keyword and use it to connect the object

with that specific constructor.

© Zindell Technologies, Ltd. 08/09/10

© Abelski eLearning 24

08/09/10 © Abelski eLearning 24

Structured Classes & Properties

<<create>>

© Zindell Technologies, Ltd. 08/09/10

© Abelski eLearning 25

08/09/10 © Abelski eLearning 25

Collaboration
Organizing the elements in order to realize a behavior is called

Collaboration. Such collection of instances is wired together

using connectors to show the communication flow.

Within the collaboration we name each involved instance with a

name based on its role (not its class type).

A collaboration is depicted using a dashed eclipse. The name we

give that collaboration is written within that eclipse.

© Zindell Technologies, Ltd. 08/09/10

© Abelski eLearning 26

08/09/10 © Abelski eLearning 26

Collaboration
Observer / Observable

Observer:Player Observable:Coach5

UML 2.0 specification allows creating collaboration diagrams
with any of the available behavioral diagrams.

© Zindell Technologies, Ltd. 08/09/10

© Abelski eLearning 27

08/09/10 © Abelski eLearning 27

Collaboration
Alternatively, we can draw a smaller collaboration eclipse and

depict the two instances outside of the eclipse and tie them with

the eclipse using communication links. When doing so, the role

name will be written above each one of the communication links

(instead of writing it within the instance rectangle).

Choosing this alternative approach we can also have more space

to include a list of all members (fields & methods) for each one of

the objects.

UML 2.0 specification allows creating collaboration diagrams
with any of the available behavioral diagrams.

© Zindell Technologies, Ltd. 08/09/10

© Abelski eLearning 28

08/09/10 © Abelski eLearning 28

Collaboration

Observer / Observable

Observer:Player Observable:Basketball

Observer Observerable

© Zindell Technologies, Ltd. 08/09/10

© Abelski eLearning 29

08/09/10 © Abelski eLearning 29

Collaboration Occurrence
A collaboration occurrence is kind of an instance of collaboration.

This way, if a given collaboration already exists and we find that

same collaboration made up as a sub system of other objects we

can consider it as a collaboration occurrence.

When using collaboration occurrence we can assign role names

to internal elements of the classifier. This is very helpful given

that there may be multiple occurrences of a particular

collaboration.

UML 2.0 specification allows creating collaboration diagrams
with any of the available behavioral diagrams.

© Zindell Technologies, Ltd. 08/09/10

© Abelski eLearning 30

08/09/10 © Abelski eLearning 30

Collaboration Occurrence
Showing more than one collaboration occurrence in the same

diagram can be done by drawing the collaboration as a small

dashed eclipse and drawing dashed lines from that eclipse to

each element that takes part fulfilling a specific role in the

collaboration.

UML 2.0 specification allows creating collaboration diagrams
with any of the available behavioral diagrams.

© Zindell Technologies, Ltd. 08/09/10

© Abelski eLearning 31

08/09/10 © Abelski eLearning 31

Collaboration Occurrence

Playing:Observer/Observable

:Player

:BasketballObserver

Observerable

:Coach5

ObserverTraining:Observer/Observable

Observerable

TeamPlayer

UML 2.0 specification allows creating collaboration diagrams
with any of the available behavioral diagrams.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31

