
© 2008 Haim Michael. All Rights Reserved.

UML Component Diagrams

© 2008 Haim Michael. All Rights Reserved.

Introduction
Usually, when analyzing large software systems we can break

them into subsystems.
The UML component diagram was developed to assist us.

Each component is a replaceable executable piece of a larger

system.
The functionality provided by each component is specified by a set of interfaces the

component realizes.

© 2008 Haim Michael. All Rights Reserved.

Introduction
Each component functions using interfaces available by others.

The notation used to represent a component is:

Within the component notation we will write its name.

<<component>>
Student

© 2008 Haim Michael. All Rights Reserved.

Component Dependencies
A dependency between one component and another one is

depicted using a dashed line with an open arrow.

The arrow direction shows the dependency direction.

<<component>>
Student

<<component>>
School

© 2008 Haim Michael. All Rights Reserved.

Component Views
The component has two possible views. The “Black Box View”

and the “White Box View”.

Black Box View

Shows the component from an outside perspective without getting into too many

details.

White Box View

Shows the component including how it realizes the interfaces it provides. This is a more

detailed view and is usually illustrated with a class diagram.

© 2008 Haim Michael. All Rights Reserved.

Black Box View
The black box view doesn't specify anything about its internal

implementation.

The black box view does include details about the interfaces it

provides and details about the interfaces it requires.

The required and provided interfaces are represented using the

assembly connectors, which are illustrated using the ball &

socket icon:

© 2008 Haim Michael. All Rights Reserved.

Black Box View
 The required interface is represented using the socket icon.

The name of the required interface will be written near the

connector symbol.

<<component>>
Student

SchoolRegisterer

© 2008 Haim Michael. All Rights Reserved.

Black Box View
 The provided interface is illustrated using the ball icon.

The name of the provided interface will be written near the

connector symbol.

<<component>>
School

SchoolRegisterer

© 2008 Haim Michael. All Rights Reserved.

Black Box View
 Writing two components that match their required & provided

interfaces is done by simply connecting them via their matching

provided and required interfaces.

<<component>>
School

School
Registerer

<<component>>
Student

School
Registerer

© 2008 Haim Michael. All Rights Reserved.

Black Box View
 The interface's notation is an empty rectangle in which we write

the interface name and “<<interface>>” above it.

A dependency arrow will be drawn from the component to the

required interface.

© 2008 Haim Michael. All Rights Reserved.

Black Box View

<<component>>
SalesDataProcess

<<component>>
BankSynchronization

<<component>>
FinanceModule

<<interface>>
FinanceProcessMethods

<<interface>>
AccountingMatcherMethods

© 2008 Haim Michael. All Rights Reserved.

Black Box View
 More detailed info can be provided by drawing the component

with compartments.

The compartment on top includes the name of the class with the

<<component>> stereotype above. The one on the bottom

includes two lists. One is of the required interfaces and the other

is of the provided ones. The <<required>> and

<<provided>> stereotypes are used accordingly.

© 2008 Haim Michael. All Rights Reserved.

Black Box View

<<component>>
AccountingManager

<<provided interfaces>>
AccountingCommands
IssueInvoice
IssueReceipt

<<required interfaces>>
BankingServices
DebthCollecting

© 2008 Haim Michael. All Rights Reserved.

Black Box View
 A more detailed compartment diagram can include a third

compartment stereotyped with <<artifacts>>, that lists the

components' artifact\s.

© 2008 Haim Michael. All Rights Reserved.

Black Box View
 <<component>>

AccountingManager

<<provided interfaces>>
AccountingCommands
IssueInvoice
IssueReceipt

<<required interfaces>>
BankingServices
DebthCollecting

<<artifacts>>
accountingmanager.jar

© 2008 Haim Michael. All Rights Reserved.

White Box View
 The white box view presents the way a component realizes the

interfaces it provides.

The realization compartment can be added to the compartment

diagram and lists the exact classifiers that realize the provided

interfaces. This new compartment should be labeled with the

<<realizations>> stereotype.

© 2008 Haim Michael. All Rights Reserved.

White Box View

<<component>>
AccountingManager

<<provided interfaces>>
AccountingCommands
IssueInvoice
IssueReceipt

<<required interfaces>>
BankingServices
DebthCollecting

<<realizations>>
AccountingManager

<<artifacts>>
accountingmanager.jar

© 2008 Haim Michael. All Rights Reserved.

White Box View
 To provide more information about the component structure we

can create a diagram that shows the component, the classes it

includes and the relationships between them.

Between the classes and the component we will draw

dependency relationships.

© 2008 Haim Michael. All Rights Reserved.

White Box View
 <<component>>

FinanceModule

AccountingManager AccountingCommandsBook1

AccountingCommand

© 2008 Haim Michael. All Rights Reserved.

White Box View
 An alternative can be drawing the classifiers within the

component frame.

A port, depicted as a small rectangle on one of the component's

sides represents a required / provided (or both) functionality.

Each one of the assembly connectors (both of type ball.. and of

type socket...) are drawn as coming out of a port.

If we draw the classifiers within the component frame then we

can connect each port with its responsible class.

© 2008 Haim Michael. All Rights Reserved.

White Box View
 <<component>>

FinanceModule

AccountingManager AccountingBookAccountingManager

AccountingCommand

0..*

Accounting
Services

© 2008 Haim Michael. All Rights Reserved.

Component Stereotypes
 The following is a summary list of the stereotypes you can apply

to components:

Realization

When realize spec provided by another component. Another component that provides

the specification.

Process

When capable of fulfilling functional requests. Transaction based. Holds data about the

state.

Service

When fulfilling functional requests by others. Stateless based.

© 2008 Haim Michael. All Rights Reserved.

Component Stereotypes

Entity

When representing a business entity. Component for data storage.

Subsystem

A large component, part of a big system. Usually larger than a simple component.

Specification

Component with providing and requiring interfaces and without any implementation.

UML Components Diagram 07/25/10

© 2008 Haim Michael. All Rights Reserved. 1

07/25/10 © 2008 Haim Michael. All Rights Reserved. 1

UML Component Diagrams

UML Components Diagram 07/25/10

© 2008 Haim Michael. All Rights Reserved. 2

07/25/10 © 2008 Haim Michael. All Rights Reserved. 2

Introduction
Usually, when analyzing large software systems we can break

them into subsystems.
The UML component diagram was developed to assist us.

Each component is a replaceable executable piece of a larger

system.
The functionality provided by each component is specified by a set of interfaces the

component realizes.

Visual Basic components were the first to reflect the components' based software
development.

Java Beans and Enterprise Java Beans reflect another more advance approach for
components based software development.

UML Components Diagram 07/25/10

© 2008 Haim Michael. All Rights Reserved. 3

07/25/10 © 2008 Haim Michael. All Rights Reserved. 3

Introduction
Each component functions using interfaces available by others.

The notation used to represent a component is:

Within the component notation we will write its name.

<<component>>
Student

The small component icon (rectangle with two smaller rectangles on the right side) is
optional.

In the past (UML1.4) the notation for component was:

UML Components Diagram 07/25/10

© 2008 Haim Michael. All Rights Reserved. 4

07/25/10 © 2008 Haim Michael. All Rights Reserved. 4

Component Dependencies
A dependency between one component and another one is

depicted using a dashed line with an open arrow.

The arrow direction shows the dependency direction.

<<component>>
Student

<<component>>
School

The arrow direction shows the dependency direction. In this sample Student dependends
on the School.

UML Components Diagram 07/25/10

© 2008 Haim Michael. All Rights Reserved. 5

07/25/10 © 2008 Haim Michael. All Rights Reserved. 5

Component Views
The component has two possible views. The “Black Box View”

and the “White Box View”.

Black Box View

Shows the component from an outside perspective without getting into too many

details.

White Box View

Shows the component including how it realizes the interfaces it provides. This is a more

detailed view and is usually illustrated with a class diagram.

UML Components Diagram 07/25/10

© 2008 Haim Michael. All Rights Reserved. 6

07/25/10 © 2008 Haim Michael. All Rights Reserved. 6

Black Box View
The black box view doesn't specify anything about its internal

implementation.

The black box view does include details about the interfaces it

provides and details about the interfaces it requires.

The required and provided interfaces are represented using the

assembly connectors, which are illustrated using the ball &

socket icon:

UML Components Diagram 07/25/10

© 2008 Haim Michael. All Rights Reserved. 7

07/25/10 © 2008 Haim Michael. All Rights Reserved. 7

Black Box View
 The required interface is represented using the socket icon.

The name of the required interface will be written near the

connector symbol.

<<component>>
Student

SchoolRegisterer

UML Components Diagram 07/25/10

© 2008 Haim Michael. All Rights Reserved. 8

07/25/10 © 2008 Haim Michael. All Rights Reserved. 8

Black Box View
 The provided interface is illustrated using the ball icon.

The name of the provided interface will be written near the

connector symbol.

<<component>>
School

SchoolRegisterer

UML Components Diagram 07/25/10

© 2008 Haim Michael. All Rights Reserved. 9

07/25/10 © 2008 Haim Michael. All Rights Reserved. 9

Black Box View
 Writing two components that match their required & provided

interfaces is done by simply connecting them via their matching

provided and required interfaces.

<<component>>
School

School
Registerer

<<component>>
Student

School
Registerer

Drawing the component diagram including the assemblies connectors provides more info.

UML Components Diagram 07/25/10

© 2008 Haim Michael. All Rights Reserved. 10

07/25/10 © 2008 Haim Michael. All Rights Reserved. 10

Black Box View
 The interface's notation is an empty rectangle in which we write

the interface name and “<<interface>>” above it.

A dependency arrow will be drawn from the component to the

required interface.

UML Components Diagram 07/25/10

© 2008 Haim Michael. All Rights Reserved. 11

07/25/10 © 2008 Haim Michael. All Rights Reserved. 11

Black Box View

<<component>>
SalesDataProcess

<<component>>
BankSynchronization

<<component>>
FinanceModule

<<interface>>
FinanceProcessMethods

<<interface>>
AccountingMatcherMethods

UML Components Diagram 07/25/10

© 2008 Haim Michael. All Rights Reserved. 12

07/25/10 © 2008 Haim Michael. All Rights Reserved. 12

Black Box View
 More detailed info can be provided by drawing the component

with compartments.

The compartment on top includes the name of the class with the

<<component>> stereotype above. The one on the bottom

includes two lists. One is of the required interfaces and the other

is of the provided ones. The <<required>> and

<<provided>> stereotypes are used accordingly.

UML Components Diagram 07/25/10

© 2008 Haim Michael. All Rights Reserved. 13

07/25/10 © 2008 Haim Michael. All Rights Reserved. 13

Black Box View

<<component>>
AccountingManager

<<provided interfaces>>
AccountingCommands
IssueInvoice
IssueReceipt

<<required interfaces>>
BankingServices
DebthCollecting

UML Components Diagram 07/25/10

© 2008 Haim Michael. All Rights Reserved. 14

07/25/10 © 2008 Haim Michael. All Rights Reserved. 14

Black Box View
 A more detailed compartment diagram can include a third

compartment stereotyped with <<artifacts>>, that lists the

components' artifact\s.

UML Components Diagram 07/25/10

© 2008 Haim Michael. All Rights Reserved. 15

07/25/10 © 2008 Haim Michael. All Rights Reserved. 15

Black Box View
 <<component>>

AccountingManager

<<provided interfaces>>
AccountingCommands
IssueInvoice
IssueReceipt

<<required interfaces>>
BankingServices
DebthCollecting

<<artifacts>>
accountingmanager.jar

UML Components Diagram 07/25/10

© 2008 Haim Michael. All Rights Reserved. 16

07/25/10 © 2008 Haim Michael. All Rights Reserved. 16

White Box View
 The white box view presents the way a component realizes the

interfaces it provides.

The realization compartment can be added to the compartment

diagram and lists the exact classifiers that realize the provided

interfaces. This new compartment should be labeled with the

<<realizations>> stereotype.

UML Components Diagram 07/25/10

© 2008 Haim Michael. All Rights Reserved. 17

07/25/10 © 2008 Haim Michael. All Rights Reserved. 17

White Box View

<<component>>
AccountingManager

<<provided interfaces>>
AccountingCommands
IssueInvoice
IssueReceipt

<<required interfaces>>
BankingServices
DebthCollecting

<<realizations>>
AccountingManager

<<artifacts>>
accountingmanager.jar

UML Components Diagram 07/25/10

© 2008 Haim Michael. All Rights Reserved. 18

07/25/10 © 2008 Haim Michael. All Rights Reserved. 18

White Box View
 To provide more information about the component structure we

can create a diagram that shows the component, the classes it

includes and the relationships between them.

Between the classes and the component we will draw

dependency relationships.

UML Components Diagram 07/25/10

© 2008 Haim Michael. All Rights Reserved. 19

07/25/10 © 2008 Haim Michael. All Rights Reserved. 19

White Box View
 <<component>>

FinanceModule

AccountingManager AccountingCommandsBook1

AccountingCommand

The dashed open arrow line represents dependency.

More details can be provided if the internals of each class will be detailed listing all
members.

UML Components Diagram 07/25/10

© 2008 Haim Michael. All Rights Reserved. 20

07/25/10 © 2008 Haim Michael. All Rights Reserved. 20

White Box View
 An alternative can be drawing the classifiers within the

component frame.

A port, depicted as a small rectangle on one of the component's

sides represents a required / provided (or both) functionality.

Each one of the assembly connectors (both of type ball.. and of

type socket...) are drawn as coming out of a port.

If we draw the classifiers within the component frame then we

can connect each port with its responsible class.

UML Components Diagram 07/25/10

© 2008 Haim Michael. All Rights Reserved. 21

07/25/10 © 2008 Haim Michael. All Rights Reserved. 21

White Box View
 <<component>>

FinanceModule

AccountingManager AccountingBookAccountingManager

AccountingCommand

0..*

Accounting
Services

UML Components Diagram 07/25/10

© 2008 Haim Michael. All Rights Reserved. 22

07/25/10 © 2008 Haim Michael. All Rights Reserved. 22

Component Stereotypes
 The following is a summary list of the stereotypes you can apply

to components:

Realization

When realize spec provided by another component. Another component that provides

the specification.

Process

When capable of fulfilling functional requests. Transaction based. Holds data about the

state.

Service

When fulfilling functional requests by others. Stateless based.

UML Components Diagram 07/25/10

© 2008 Haim Michael. All Rights Reserved. 23

07/25/10 © 2008 Haim Michael. All Rights Reserved. 23

Component Stereotypes

Entity

When representing a business entity. Component for data storage.

Subsystem

A large component, part of a big system. Usually larger than a simple component.

Specification

Component with providing and requiring interfaces and without any implementation.

A component stereotyped with <<entity>> is usually a persisted component and usually
doesn't have any functionality. Entity Bean (EJB) is a good sample for entity component.

A good example for process component is the session bean (EJB).

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

