
© 2008 Haim Michael. All Rights Reserved.

UML Class Diagrams

© 2008 Haim Michael. All Rights Reserved.

Introduction

The UML Class diagram provides information about the classes

we are going to declare, their relationships with each other, their

attributes and their operations.

The UML Class diagram depicts the detailed static design of our

object oriented planned software.

A Class is represented with a rectangular box divided into

compartments used for holding its name, its attributes and its

operations.

© 2008 Haim Michael. All Rights Reserved.

Introduction

The class name

The class attributes

The class operations

© 2008 Haim Michael. All Rights Reserved.

Introduction

An object is an instance of a class. Depicting an object in our

diagram is done by drawing an empty rectangle and writing the

object name + ':' + its type and an underline. The underline will

differentiate this depiction from a class description. A Class

depiction doesn't include the underline.

This depiction
represents a class

This depiction
represents an
object

Car Honda : Car

© 2008 Haim Michael. All Rights Reserved.

The Class Name

UML suggests that a class name should start with a capital letter,

be centered in the top compartment, be written in a boldface font

and be written in italics if the class is abstract.

An abstract class

© 2008 Haim Michael. All Rights Reserved.

Visibility Possibilities

UML Class diagram allows using four different visibility levels:
- Private

+ Public

Protected

~ Package

© 2008 Haim Michael. All Rights Reserved.

Representing Class Attributes

Representing attributes should use the following notation:
visibility / name : type multiplicity = default

{property strings and constraints}

visibility - should be one of these symbols: +, -, # or ~

/ - indicates whether the attribute is a derived one.

name - is a noun or a short phrase naming the attribute.

type - this is the type of the attribute... can be either a class type or a primitive one.

multiplicity - specifies the number of instances of the attribute type.

default - this is the default value of the attribute.

property strings - is a collection of properties (or tags) that can be attached.

constraints - one or more restrictions placed on an attribute.

© 2008 Haim Michael. All Rights Reserved.

Representing Class Attributes

The attribute should be placed within the second compartment

of the class (below the top compartment where we write the

class title).

© 2008 Haim Michael. All Rights Reserved.

Attributes via Class Relationships

You can represent attributes using the relationship notation

connecting between the class you now describe and another

class that will be instantiated in order to get an object that its

reference will be saved within the class attribute we now

describe.

© 2008 Haim Michael. All Rights Reserved.

Derived Attributes

The derived notation (/) indicates a redundant attribute, that its

value depends on the value of other attribute/s in the same

object.

© 2008 Haim Michael. All Rights Reserved.

Attributes Multiplicity

The multiplicity characteristic of attribute denotes how many

instances of the attribute type are created.
When omitting the multiplicity default is 1.

When specifying a range of possible values the * represents infinity.

When specifying * only, it means zero or more (infinity).

© 2008 Haim Michael. All Rights Reserved.

Attribute Properties

An attribute might have a number of properties that convey

additional information:
readOnly specifies the attribute can't be modified once its initial value is set.

union specifies that the attribute type is a union of possible values.

subsets <attribute name> specifies that the possible values for this attribute

are a subset of all valid values for the other attribute.

redefines <attribute name> specifies that this attribute is kind of an alias for the

 other attribute.

composite specifies that this attribute takes part of a relationship between this

 class and other\s.

© 2008 Haim Michael. All Rights Reserved.

Attribute Constraints

A constraint represents a restriction we set for a specific

attribute.

We can depict a constraint writing it inside curly braces { } as a

boolean expression that should be true.

The sum must always be positive!

The id must always be positive!

© 2008 Haim Michael. All Rights Reserved.

Static Attributes

Static attributes are represented by placing an underline

beneath the attribute specification.

The 'bank' variable is static

© 2008 Haim Michael. All Rights Reserved.

Representing Class Operations

Representing operations should use the following notation:
visibility name (parameters) : return type {properties}

Each parameter should use the following notation:

direction parameter_name : type [multiplicity] = default_value {properties}

visibility indicates the visibility of the operation (+,-,# or ~)

name this is the operation name

return type this is the type of information that will be returned

properties specifies constraints and properties associated with the operation

direction can be one of the following: in, inout, out or return.

parameter_name starts with a lowercase subsequent with a capital one.

type class type or a primitive type.

© 2008 Haim Michael. All Rights Reserved.

Representing Class Operations

 multiplicity specifies the number of instances of the parameter type

default_value default value that will be set if no argument is sent

properties specifies within curly brackets parameter properties such as

read only and unique.

The operations are specified within the separated bottom

compartment.
The getBranches operation has
one parameter that is used as
'out' for getting it filled by
getBranches operation. The
'branches' is – in fact – an array of
1 (or more) rooms that hold
references for Branch objects.

© 2008 Haim Michael. All Rights Reserved.

Operation Constraints

Constraints (Preconditions & Postconditions) can be placed

within curly brackets immediately after the operation signature.

Preconditions

Condition the system needs to meet before the operation call.

Will be denoted using the following notation:

{precondition: boolean_expression}

Postcondition

Condition the system needs to meet after the operation call.

Will be denoted using the following notation:

{postcondition: boolean_expression}

© 2008 Haim Michael. All Rights Reserved.

Operation Constraints

© 2008 Haim Michael. All Rights Reserved.

Body Conditions

The body condition describes a condition the returned value

needs to meet.

Unlike Postcondition, the body condition can be replaced with

another condition by extending classes.

The body condition is presented within a note connected with a

dashed line to the operation specification it refers.

© 2008 Haim Michael. All Rights Reserved.

Body Conditions

© 2008 Haim Michael. All Rights Reserved.

Query Operations

A query operation is an operation that does not modify any of

the object's attributes.

Marking an operation as a query one is done by appending the

{query} constraint to the operation signature.

Calling getCapital() operation does not
change any of the object attributes.

© 2008 Haim Michael. All Rights Reserved.

Operations Exceptions

It is possible to inform about exceptions that might be thrown

using a small note connected with a dashed line to the

operation it refers.

© 2008 Haim Michael. All Rights Reserved.

Static Operations

A static operation is marked with an underline.

© 2008 Haim Michael. All Rights Reserved.

Abstract Class

An abstract class is denoted by writing the class name in italics.

The abstract operation is denoted by writing its name in italics

as well.

getCapital() is an
abstract method

Bank is an abstract class

© 2008 Haim Michael. All Rights Reserved.

The Dependency Relationship

One class has a dependency relationship with another class

when it uses or had knowledge of it.

The dependency relationship is usually known as “uses a”.

Dependency relationship is marked using a dashed arrow.

Class Utils depends on Math
as it uses Math methods“uses a”

© 2008 Haim Michael. All Rights Reserved.

The Association Relationship

The association relationship is a bit stronger than the

dependency one.

One class has an association relationship with another class

when it retains a relationship to that class over an extended

period of time and the life lines of the two objects that were

instantiated from the two classes is not tied together.

The association relationship is usually known as “has a”.

The association relationship is denoted using a simple line.

© 2008 Haim Michael. All Rights Reserved.

The Association Relationship

“has a”

© 2008 Haim Michael. All Rights Reserved.

The Association Relationship

When drawing an association relationship between two classes

it is possible to indicate the possibility to navigate in a specific

direction from one class to another, by adding a simple arrow to

the association line.

Placing 'X' on the association line near one of the classes will

indicate that it is forbidden to navigate in its direction.

© 2008 Haim Michael. All Rights Reserved.

The Association Relationship

In this association each
SoccerPlayer object holds a
reference to the ball. Each
soccer player object can
navigate to the soccer ball.
The other way around is not
possible. A soccer ball
doesn't hold a reference to a
player.. so the soccer ball
can never navigate to the
player that is connected to it.

“has a”

© 2008 Haim Michael. All Rights Reserved.

The Association Relationship

When drawing the association line it is possible to add a small

textual phrase above the line. By doing so we can provide some

context.

Kicks the

“has a”

© 2008 Haim Michael. All Rights Reserved.

The Association Relationship

Using the association relationship in order to indicate about a

specific attribute of one of the classes allows us specifying a

multiplicity value in order to indicate how many instances of a

particular class are involved.
“has a”

© 2008 Haim Michael. All Rights Reserved.

The Aggregation Relationship

The aggregation relationship is a bit stronger than association.

Unlike association, an aggregation relationship between two

classes implies about ownership and might imply about some

kind of relationship between the life lines.

The aggregation relationship is usually known as “owns a”.

The aggregation relationship is depicted using a line with an

arrow on one end and an empty diamond on the other.

© 2008 Haim Michael. All Rights Reserved.

The Aggregation Relationship

Each human that use glasses
owns a pair of glasses. Unlike the
composition relationship (explained
in the next slides) the glasses can
be used by other humans as well.
The glasses are not part of human.

“owns a”

© 2008 Haim Michael. All Rights Reserved.

The Composition Relationship

The composition relationship is a very strong relationship

between classes. Stronger than aggregation.

The composition relationship indicates a whole-part

relationship. Unlike the other relationships, the “part” piece can

be involved in one composition relationship at any given time.

We depicted the composition relationship the same way we

depict the aggregation one, just that instead of empty diamond

we use a black one.

© 2008 Haim Michael. All Rights Reserved.

The Composition Relationship

Each heart is part of a
human. At the same time, the
very same heart can be part
of another human.

The life lines of any two instances involved in the composition

relationships is (nearly) always linked.

The composition relationship is usually known as “is part of”.

“is part of”

© 2008 Haim Michael. All Rights Reserved.

The Generalization Relationship

The generalization relationship between two classes exists when

one class is less specific (kind of “more general”) version of the

other class.

The generalization relationship is usually read as “is a”.

The generalization relationship is shown with a solid line with a

closed arrow pointing from the specific class to the general one.

© 2008 Haim Michael. All Rights Reserved.

Classes Relationships Summary

Relationship Description Arrow Description

Dependency “uses a” One class uses another

Association “has a” One class retains relationship to the other

over an extended period of time.

The lifeline of the two is not tied.

Aggregation “owns a” Ownership & some sort of relationship

 between the two life lines.

Composition “is part of” The two life lines is (nearly) always linked.

© 2008 Haim Michael. All Rights Reserved.

The Generalization Relationship

© 2008 Haim Michael. All Rights Reserved.

Association Classes

An association class is a class that assists describing a

relationship between two elements.

Association class is depicted like any other class, connected with

a dashed line to the association it represents.

© 2008 Haim Michael. All Rights Reserved.

Association Classes

© 2008 Haim Michael. All Rights Reserved.

Association Qualifiers

An association qualifier is an additional information that describes

an association connection between two classes.

The association qualifier is usually an attribute of the target

element.

The association qualifier is depicted by placing a small rectangle

between the association line and the source element and drawing

the qualifier name inside.

© 2008 Haim Michael. All Rights Reserved.

Association Qualifiers

1

© 2008 Haim Michael. All Rights Reserved.

Interfaces

In order to depict an interface we can use the class standard

notation together with the “<<interface>>” stereotype.

Alternatively, we can use the ball-and-socket notation.

© 2008 Haim Michael. All Rights Reserved.

Interfaces

Interfaces can't be instantiated.

There is a need to declare a class

that realize (implements) the interface.

Depicting a class that realize (implements)

an interface will be done using a

dashed line starting at the class and

leading to the interface. A closed arrow

will be depicted at the end.

© 2008 Haim Michael. All Rights Reserved.

Interfaces

© 2008 Haim Michael. All Rights Reserved.

Templates

Indicating that a class is a template class can be done by drawing

a dashed rectangle in the upper right corner of the class, and

specify inside that dashed rectangle a name to act as a place

holder for the actual type.

© 2008 Haim Michael. All Rights Reserved.

Database Schema

Mapping DB tables to classes and table columns to attributes

enables presenting a DB Schema using the UML Class Diagram.

Primary keys, foreign keys and constraints can be displayed using

UML constraints or stereotypes.

Relationships between tables can be depicted using associations

between classes.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47

