
© 2008 Haim Michael. All Rights Reserved.

Class Design Principles

© 2008 Haim Michael. All Rights Reserved.

What is Cohesion?

In terms of object oriented systems, the cohesion is the

measure of how strongly related and focused the

responsibilities of an object are.

© 2008 Haim Michael. All Rights Reserved.

Single Responsibility Principle

In order to keep our objects focused, understandable,

manageable and with low coupling we should assign each one

of our object with a single responsibility only.

Doing so, the cohesion will remain high and our software

system will be more understandable and manageable.

© 2008 Haim Michael. All Rights Reserved.

The Open Closed Design Principle

“Software entities (classes, modules, functions etc.) should be

open for extension, but closed for modification.” (Martin Fowler, 1999)

Open for Extension

It should be possible to to extend the behavior of the software entity. Over time,

requirements change and new needs emerge. It should be possible to extend the

behavior of the software entity in accordance with our changing needs.

Closed for Modification

Being capable of extending the behavior of a software entity shouldn't be involved with

changes of the source code or the binary code of the module itself.

© 2008 Haim Michael. All Rights Reserved.

The Liskov Substitution Principle

“What is wanted is something like the following substitution

property: If for each object o1 of type S there is an object o2 of

type T such that for all programs P defined in terms of T, the

behavior of P is unchanged when o1 is substituted for o2, then S

is a subtype of T. (Barbara Liskov, 1988)

© 2008 Haim Michael. All Rights Reserved.

The Dependency Inversion Principle

“High-level modules should not depend on low-level modules.

Both should depend on abstractions.” (Robert Martin, 2002)

“Abstractions should not depend on details. Details should

depend on abstractions.” (Robert Martin, 2002)

© 2008 Haim Michael. All Rights Reserved.

The Dependency Inversion Principle

© 2008 Haim Michael. All Rights Reserved.

The Interface Segregation Principle

“Clients should not be forced to depend on methods that they do

not use.” (Robert Martin, 2002)
Based on this principle, we should prefer having many specific interfaces than one

general purpose one. When having one class that depends on another, that

dependency should be on the smallest possible interface. Having a fat interface is a

very bad practice. A fat interface is not cohesive.

© Haim Michael. All Rights Reserved. 10/31/08

© Haim Michael. All Rights Reserved. 1

10/31/08 © 2008 Haim Michael. All Rights Reserved. 1

Class Design Principles

© Haim Michael. All Rights Reserved. 10/31/08

© Haim Michael. All Rights Reserved. 2

10/31/08 © 2008 Haim Michael. All Rights Reserved. 2

What is Cohesion?

In terms of object oriented systems, the cohesion is the

measure of how strongly related and focused the

responsibilities of an object are.

© Haim Michael. All Rights Reserved. 10/31/08

© Haim Michael. All Rights Reserved. 3

10/31/08 © 2008 Haim Michael. All Rights Reserved. 3

Single Responsibility Principle

In order to keep our objects focused, understandable,

manageable and with low coupling we should assign each one

of our object with a single responsibility only.

Doing so, the cohesion will remain high and our software

system will be more understandable and manageable.

© Haim Michael. All Rights Reserved. 10/31/08

© Haim Michael. All Rights Reserved. 4

10/31/08 © 2008 Haim Michael. All Rights Reserved. 4

The Open Closed Design Principle

“Software entities (classes, modules, functions etc.) should be

open for extension, but closed for modification.” (Martin Fowler, 1999)

Open for Extension

It should be possible to to extend the behavior of the software entity. Over time,

requirements change and new needs emerge. It should be possible to extend the

behavior of the software entity in accordance with our changing needs.

Closed for Modification

Being capable of extending the behavior of a software entity shouldn't be involved with

changes of the source code or the binary code of the module itself.

© Haim Michael. All Rights Reserved. 10/31/08

© Haim Michael. All Rights Reserved. 5

10/31/08 © 2008 Haim Michael. All Rights Reserved. 5

The Liskov Substitution Principle

“What is wanted is something like the following substitution

property: If for each object o1 of type S there is an object o2 of

type T such that for all programs P defined in terms of T, the

behavior of P is unchanged when o1 is substituted for o2, then S

is a subtype of T. (Barbara Liskov, 1988)

The Liskov Substitution principle is important for two reasons:

1. If Liskov Substitution principle doesn't exist then the class
hierarchies would be a mess. Whenever a subclass instance is
passed as a parameter strange behavior would have
happened.

2. If Liskov Substitution principle doesn't exist then Unit tests
would have failed for the subclasses.

© Haim Michael. All Rights Reserved. 10/31/08

© Haim Michael. All Rights Reserved. 6

10/31/08 © 2008 Haim Michael. All Rights Reserved. 6

The Dependency Inversion Principle

“High-level modules should not depend on low-level modules.

Both should depend on abstractions.” (Robert Martin, 2002)

“Abstractions should not depend on details. Details should

depend on abstractions.” (Robert Martin, 2002)

© Haim Michael. All Rights Reserved. 10/31/08

© Haim Michael. All Rights Reserved. 7

10/31/08 © 2008 Haim Michael. All Rights Reserved. 7

The Dependency Inversion Principle

© Haim Michael. All Rights Reserved. 10/31/08

© Haim Michael. All Rights Reserved. 8

10/31/08 © 2008 Haim Michael. All Rights Reserved. 8

The Interface Segregation Principle

“Clients should not be forced to depend on methods that they do

not use.” (Robert Martin, 2002)
Based on this principle, we should prefer having many specific interfaces than one

general purpose one. When having one class that depends on another, that

dependency should be on the smallest possible interface. Having a fat interface is a

very bad practice. A fat interface is not cohesive.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8

