
© 2008 Haim Michael

Silverlight

abelski



© 2008 Haim Michael

Introduction



© 2008 Haim Michael

Introduction

 It is possible to develop a Silverlight application either using 

the Visual Studio or the Expression Blend. 

 The Visual Studio is optimized for developers. The 

Expression Blend is optimized for designers. 



© 2008 Haim Michael

Hello World

 We can easily create a new Silverlight project using the 

Visual Studio. We can select using either C# or VB.NET. 

http://www.youtube.com/watch?v=WqWlyeRISN4


© 2008 Haim Michael

Hello World



© 2008 Haim Michael

The App.xaml File

 The App.xaml and App.cs.xaml include the configuration 

for our Silverlight application. 

 Within these files we can define resources that will be 

available for all pages. 

 Within these files we can interact with the application 

events, such as the startup and the errors handling.



© 2008 Haim Michael

The MainPage.xaml File

 The MainPage.xaml and MainPage.cs.xaml files define 

the initial user interface that will be shown when the 

application starts. 



© 2008 Haim Michael

The AppManifest.xaml File

 This file lists the assemblies that our application uses. We 

can find it within the Properties folder. 



© 2008 Haim Michael

The AssemblyInfo.cs File

 This file contains information about our project (name, 

version, publisher etc.). 

 This information will be embedded into our project assembly.



© 2008 Haim Michael

Events Handling

 Handling the user events is done similarly to handling user 

events in Java Script. 



© 2008 Haim Michael

Events Handling



© 2008 Haim Michael

Events Handling



© 2008 Haim Michael

Events Handling



© 2008 Haim Michael

Silverlight Class Libraries

 Silverlight doesn't include all classes we can find in WPF 

and those it includes don't offer the same capabilities as in 

WPF. 



© 2008 Haim Michael

Deployment

 The XAP file wraps the Silverlight application units, including 

the application manifest and the assemblies.

 The XAP file is a compressed ZIP archive. When the client 

receives it the XAP file is decompressed. The time required 

to download the application is reduced. 

 When our Silverlight application uses add-on assemblies we 

will find them within the XAP file. 



© 2008 Haim Michael

Deployment

 In order to deploy our Silverlight application we just need to 

copy the XAP file to a web server together with the test page 

or a similar other HTML file that includes the Silverlight 

content region.  



© 2008 Haim Michael

Silverlight Add-on Assemblies

 In order to achieve  lean execution environment some of the 

functionality was removed from the core runtime and was 

placed in separated add-on assemblies. 

 These assemblies are considered to be part of the 

Silverlight platform but if we want to use them we will need 

to pack them with our application. 



© 2008 Haim Michael

Assembly Caching

 It is a deployment technique that allows us to leave 

dependent assemblies out of our XAP file in separated ZIP 

files in the same folder. 

 The application start time is reduced. Clients keep cached 

copies of frequently used assemblies.  

 By default, the Silverlight applications we develop are not 

configured to use this technique. 



© 2008 Haim Michael

The HTML Entry Page

 The HTML test page doesn’t contain Silverlight markup or 

code. It just sets up the content region for the Silverlight 

plug-in.



© 2008 Haim Michael

The Mark of The Web

 The mark of the web is an auto generated additional 

comment the HTML test page includes. 

 The web browser uses this mark in order to provide a less 

restricted execution environment. 



© 2008 Haim Michael

XAML

 The XAML (short for Extensible Application Markup 

Language and pronounced zammel) is a markup language. 

 It was initially designed as part of Windows Presentation 

Foundation (WPF). 

 We use XAML for when creating the Silverlight user 

interface. 



© 2008 Haim Michael

The Code Behind

 The code behind is where we write the events handling 

code. 



© 2008 Haim Michael

Elements Names

 The names the elements have allow us to interact with them 

pro-grammatically. 
<Grid x:Name=”TheRootLayout”>
</Grid>

 The Name attribute tells the XAML parser to add a field with 

the same name to the auto generated portion of the class, 

also known as the code behind. 
private System.Windows.Controls.Grid TheRootLayout;



© 2008 Haim Michael

Properties and Events

 The XAML file includes the usage of attributes translated 

into properties and events in the code behind.  

 Every XAML code can be replaced with a set of code 

statements that perform the same. 



© 2008 Haim Michael

Complex Properties

 In some cases we can use the property-element syntax. The 

child element is added with a name in the form of 

Parent.PropertyName. 
  

<Grid x:Name="grid1">
<Grid.Background>

 ... 
</Grid.Background>

   ... 
   </Grid>



© 2008 Haim Michael

Attached Properties

 May apply to several elements but defined in a different 

class. The attached properties are frequently used to control 

the layout of our user interface. They are translated into 

methods calls.
  

<TextBox ... Grid.Row="0"> 
</TextBox> 
... 
<Button ... Grid.Row="1"> 
</Button> 



© 2008 Haim Michael

Nesting Elements

 XAML allows each element to deal with its nested elements 

in a different way.

 One possible way is having the parent implementing 

IList<T> or IDictionary<T>. 



© 2008 Haim Michael

Events

 These are attributes mapped to events. We assign these 

attributes with names of functions. 
  

<Button ... Click="bt_Click">



© 2008 Haim Michael

XAML Resources

 The Silverlight platform includes a resources system closely 

integrated with the XAML code. 

 Each element includes the Resources property that stores a 

collection of resources as key value pairs. 



© 2008 Haim Michael

XAML Resources

<UserControl x:Class="EightBall.MainPage" ... >
<UserControl.Resources>

 <LinearGradientBrush x:Key="BackgroundNice">
<LinearGradientBrush.GradientStops>

<GradientStop Offset="0.00" Color="Green" />
<GradientStop Offset="0.70" Color="Red" />
<GradientStop Offset="1.00" Color="Yellow" />

</LinearGradientBrush.GradientStops>
 </LinearGradientBrush>

</UserControl.Resources>
 ...
</UserControl>



© 2008 Haim Michael

XAML Resources

 We can now use this resource in our XAML. We should use 

the following special syntax.
   

<Grid x:Name="grid1" Background="{StaticResource BackgroundNice}">

Unlike WPF, Silverlight supports Static Resources Only!



© 2008 Haim Michael

Sample

<Application xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
             xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml" 
             x:Class="SilverlightApplication6.App"
             >
    <Application.Resources>
        <LinearGradientBrush x:Key="mybackground">
            <LinearGradientBrush.GradientStops>
                <GradientStop Offset="0.00" Color="Black" />
                <GradientStop Offset="0.50" Color="Purple" />
                <GradientStop Offset="1.00" Color="Red" />
            </LinearGradientBrush.GradientStops>
        </LinearGradientBrush>
    </Application.Resources>
</Application>

http://www.youtube.com/watch?v=H3X-8gSEtxQ


© 2008 Haim Michael

Sample

<UserControl x:Class="SilverlightApplication6.MainPage"
    xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
    xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
    xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
    xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
    mc:Ignorable="d"
    d:DesignHeight="300" d:DesignWidth="400">

    <Grid x:Name="LayoutRoot" Background="White">
        <Button Content="Button" Height="23" 
                HorizontalAlignment="Left" 
                Margin="158,99,0,0" Name="button1" 
                VerticalAlignment="Top" Width="75"
                Background="{StaticResource mybackground}">

        </Button>
    </Grid>
</UserControl>



© 2008 Haim Michael

Sample



© 2008 Haim Michael

Accessing Resources

 It is possible to access the resources from within the code 

itself. 
   

LinearGradientBrush brush = (LinearGradientBrush)this.Resources["btfc"];



© 2008 Haim Michael

XAML Resources

 Silverlight starts the search for the required resource from 

the most inner element and ends checking the 

<Application.Resources> section of the App.xaml 

file. 



© 2008 Haim Michael

Resource Dictionaries

 We can organize the resources into resource dictionaries. 

Resource dictionary is a simple XAML document. 

 We create a resource dictionary by right clicking the project 

we develop and selecting Add → New Item → 

Silverlight Resource Dictionary Template. 



© 2008 Haim Michael

Binding

<UserControl x:Class="SilverlightApplication7.MainPage"
    xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
    xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
    xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
    xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
    mc:Ignorable="d"
    d:DesignHeight="300" d:DesignWidth="400">

    <Grid x:Name="LayoutRoot" Background="White">
        <TextBlock Height="23" HorizontalAlignment="Left" Margin="178,94,0,0"  

Name="textBlock1" Text="GoGonGa Bonga" VerticalAlignment="Top" 
            FontSize="{Binding ElementName=slider, Path=Value}" />
        <Slider Minimum="10" Maximum="100" Height="23" 

HorizontalAlignment="Left" Margin="156,185,0,0" Name="slider" 
VerticalAlignment="Top" Width="200" />

    </Grid>
</UserControl>

http://www.youtube.com/watch?v=-xSkLEiz-h4

