
© 2008 Haim Michael

Silverlight

abelski

© 2008 Haim Michael

Introduction

© 2008 Haim Michael

Introduction

 It is possible to develop a Silverlight application either using

the Visual Studio or the Expression Blend.

 The Visual Studio is optimized for developers. The

Expression Blend is optimized for designers.

© 2008 Haim Michael

Hello World

 We can easily create a new Silverlight project using the

Visual Studio. We can select using either C# or VB.NET.

http://www.youtube.com/watch?v=WqWlyeRISN4

© 2008 Haim Michael

Hello World

© 2008 Haim Michael

The App.xaml File

 The App.xaml and App.cs.xaml include the configuration

for our Silverlight application.

 Within these files we can define resources that will be

available for all pages.

 Within these files we can interact with the application

events, such as the startup and the errors handling.

© 2008 Haim Michael

The MainPage.xaml File

 The MainPage.xaml and MainPage.cs.xaml files define

the initial user interface that will be shown when the

application starts.

© 2008 Haim Michael

The AppManifest.xaml File

 This file lists the assemblies that our application uses. We

can find it within the Properties folder.

© 2008 Haim Michael

The AssemblyInfo.cs File

 This file contains information about our project (name,

version, publisher etc.).

 This information will be embedded into our project assembly.

© 2008 Haim Michael

Events Handling

 Handling the user events is done similarly to handling user

events in Java Script.

© 2008 Haim Michael

Events Handling

© 2008 Haim Michael

Events Handling

© 2008 Haim Michael

Events Handling

© 2008 Haim Michael

Silverlight Class Libraries

 Silverlight doesn't include all classes we can find in WPF

and those it includes don't offer the same capabilities as in

WPF.

© 2008 Haim Michael

Deployment

 The XAP file wraps the Silverlight application units, including

the application manifest and the assemblies.

 The XAP file is a compressed ZIP archive. When the client

receives it the XAP file is decompressed. The time required

to download the application is reduced.

 When our Silverlight application uses add-on assemblies we

will find them within the XAP file.

© 2008 Haim Michael

Deployment

 In order to deploy our Silverlight application we just need to

copy the XAP file to a web server together with the test page

or a similar other HTML file that includes the Silverlight

content region.

© 2008 Haim Michael

Silverlight Add-on Assemblies

 In order to achieve lean execution environment some of the

functionality was removed from the core runtime and was

placed in separated add-on assemblies.

 These assemblies are considered to be part of the

Silverlight platform but if we want to use them we will need

to pack them with our application.

© 2008 Haim Michael

Assembly Caching

 It is a deployment technique that allows us to leave

dependent assemblies out of our XAP file in separated ZIP

files in the same folder.

 The application start time is reduced. Clients keep cached

copies of frequently used assemblies.

 By default, the Silverlight applications we develop are not

configured to use this technique.

© 2008 Haim Michael

The HTML Entry Page

 The HTML test page doesn’t contain Silverlight markup or

code. It just sets up the content region for the Silverlight

plug-in.

© 2008 Haim Michael

The Mark of The Web

 The mark of the web is an auto generated additional

comment the HTML test page includes.

 The web browser uses this mark in order to provide a less

restricted execution environment.

© 2008 Haim Michael

XAML

 The XAML (short for Extensible Application Markup

Language and pronounced zammel) is a markup language.

 It was initially designed as part of Windows Presentation

Foundation (WPF).

 We use XAML for when creating the Silverlight user

interface.

© 2008 Haim Michael

The Code Behind

 The code behind is where we write the events handling

code.

© 2008 Haim Michael

Elements Names

 The names the elements have allow us to interact with them

pro-grammatically.
<Grid x:Name=”TheRootLayout”>
</Grid>

 The Name attribute tells the XAML parser to add a field with

the same name to the auto generated portion of the class,

also known as the code behind.
private System.Windows.Controls.Grid TheRootLayout;

© 2008 Haim Michael

Properties and Events

 The XAML file includes the usage of attributes translated

into properties and events in the code behind.

 Every XAML code can be replaced with a set of code

statements that perform the same.

© 2008 Haim Michael

Complex Properties

 In some cases we can use the property-element syntax. The

child element is added with a name in the form of

Parent.PropertyName.

<Grid x:Name="grid1">
<Grid.Background>

 ...
</Grid.Background>

 ...
 </Grid>

© 2008 Haim Michael

Attached Properties

 May apply to several elements but defined in a different

class. The attached properties are frequently used to control

the layout of our user interface. They are translated into

methods calls.

<TextBox ... Grid.Row="0">
</TextBox>
...
<Button ... Grid.Row="1">
</Button>

© 2008 Haim Michael

Nesting Elements

 XAML allows each element to deal with its nested elements

in a different way.

 One possible way is having the parent implementing

IList<T> or IDictionary<T>.

© 2008 Haim Michael

Events

 These are attributes mapped to events. We assign these

attributes with names of functions.

<Button ... Click="bt_Click">

© 2008 Haim Michael

XAML Resources

 The Silverlight platform includes a resources system closely

integrated with the XAML code.

 Each element includes the Resources property that stores a

collection of resources as key value pairs.

© 2008 Haim Michael

XAML Resources

<UserControl x:Class="EightBall.MainPage" ... >
<UserControl.Resources>

 <LinearGradientBrush x:Key="BackgroundNice">
<LinearGradientBrush.GradientStops>

<GradientStop Offset="0.00" Color="Green" />
<GradientStop Offset="0.70" Color="Red" />
<GradientStop Offset="1.00" Color="Yellow" />

</LinearGradientBrush.GradientStops>
 </LinearGradientBrush>

</UserControl.Resources>
 ...
</UserControl>

© 2008 Haim Michael

XAML Resources

 We can now use this resource in our XAML. We should use

the following special syntax.

<Grid x:Name="grid1" Background="{StaticResource BackgroundNice}">

Unlike WPF, Silverlight supports Static Resources Only!

© 2008 Haim Michael

Sample

<Application xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 x:Class="SilverlightApplication6.App"
 >
 <Application.Resources>
 <LinearGradientBrush x:Key="mybackground">
 <LinearGradientBrush.GradientStops>
 <GradientStop Offset="0.00" Color="Black" />
 <GradientStop Offset="0.50" Color="Purple" />
 <GradientStop Offset="1.00" Color="Red" />
 </LinearGradientBrush.GradientStops>
 </LinearGradientBrush>
 </Application.Resources>
</Application>

http://www.youtube.com/watch?v=H3X-8gSEtxQ

© 2008 Haim Michael

Sample

<UserControl x:Class="SilverlightApplication6.MainPage"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
 mc:Ignorable="d"
 d:DesignHeight="300" d:DesignWidth="400">

 <Grid x:Name="LayoutRoot" Background="White">
 <Button Content="Button" Height="23"
 HorizontalAlignment="Left"
 Margin="158,99,0,0" Name="button1"
 VerticalAlignment="Top" Width="75"
 Background="{StaticResource mybackground}">

 </Button>
 </Grid>
</UserControl>

© 2008 Haim Michael

Sample

© 2008 Haim Michael

Accessing Resources

 It is possible to access the resources from within the code

itself.

LinearGradientBrush brush = (LinearGradientBrush)this.Resources["btfc"];

© 2008 Haim Michael

XAML Resources

 Silverlight starts the search for the required resource from

the most inner element and ends checking the

<Application.Resources> section of the App.xaml

file.

© 2008 Haim Michael

Resource Dictionaries

 We can organize the resources into resource dictionaries.

Resource dictionary is a simple XAML document.

 We create a resource dictionary by right clicking the project

we develop and selecting Add → New Item →

Silverlight Resource Dictionary Template.

© 2008 Haim Michael

Binding

<UserControl x:Class="SilverlightApplication7.MainPage"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
 mc:Ignorable="d"
 d:DesignHeight="300" d:DesignWidth="400">

 <Grid x:Name="LayoutRoot" Background="White">
 <TextBlock Height="23" HorizontalAlignment="Left" Margin="178,94,0,0"

Name="textBlock1" Text="GoGonGa Bonga" VerticalAlignment="Top"
 FontSize="{Binding ElementName=slider, Path=Value}" />
 <Slider Minimum="10" Maximum="100" Height="23"

HorizontalAlignment="Left" Margin="156,185,0,0" Name="slider"
VerticalAlignment="Top" Width="200" />

 </Grid>
</UserControl>

http://www.youtube.com/watch?v=-xSkLEiz-h4

