
© 2008 Haim Michael

Dependency Properties

© 2008 Haim Michael

Introduction

 The dependency property is a property that can be set directly

by various different property providers while having them

prioritized.

 The MSDN docs defines a dependency property as a

"property that is backed by the WPF property system".

 The dependency property depends on multiple property

providers. Each one of them has its own level of precedence.

© 2008 Haim Michael

Introduction

 We use dependency properties just as any other property.

There is no need knowing in advance that a property we work

with is a dependency property.

 Some of the available silverlight features (e.g. binding) are

limited to dependency properties. The attached properties are

sort of dependency properties. Any property that we bind,

style, template, transform or animate must be a dependency

property.

© 2008 Haim Michael

Introduction

 Dependency properties are not always needed. When

customizing our application most likely we will eventually end

up with the need for having dependency properties.

© 2008 Haim Michael

Standard CLR Property Replacement

 The dependency properties acts as kind of wrappers around a

field. The dependency properties are kind of a replacement

for the field a standard property wraps.

© 2008 Haim Michael

Dependency Properties Definition

 In order to define a dependency property we should first

instantiate the System.Windows.DependencyProperty

class. This new object will represent the dependency property.

 The dependency property needs to be always available and

for that reason we define it as a static field in the associated

class.

© 2008 Haim Michael

Dependency Properties Definition

 The field that defines a dependency property has the name of

the ordinary property plus the word Property at its end. This

way the dependency property definition is separated from the

actual property.

 The field should be defined redonly. This way its value can

be set within the static constructor only.

© 2008 Haim Michael

Dependency Properties Definition

public class MyElement: UIElement
{

public static readonly DependencyProperty TempratureProperty;
...

}

© 2008 Haim Michael

Dependency Properties Definition

 The next step should be registering the dependency property

with the Silverlight platform. We should complete this

registration before our using the property. Therefore, we will

usually perform this required registration within the scope of

the static constructor we define in the associated class.

 We create a DependencyProperty instance by calling the

static DependencyProperty.Register() method.

© 2008 Haim Michael

Dependency Properties Definition

public class MyElement: UIElement
{

public static readonly DependencyProperty OuterTempratureProperty;

 static MyElement()
 {
 OuterTempratureProperty = DependencyProperty.Register(

“OuterTemprature“,
 typeof(Temprature),
 typeof(MyElement),
 null);

}

 ...

}
This is a standard Pattern for Defining Dependency Properties

Adding 'Property' to the Property for which we create
Dependency Property is another Standard to Follow

© 2008 Haim Michael

Dependency Properties Definition

 The actual storage of the dependency property value is

automatically taken care of, deep inside the WPF property

system.

© 2008 Haim Michael

Dependency Properties Definition

 The class that contains a dependency properties must derive

from DependencyObject.

 Defining a class that extends UIElement we fulfill this

requirement.

© 2008 Haim Michael

Dependency Properties Definition

© 2008 Haim Michael

Dependency Properties Definition

public class MyElement: UIElement
{

public static readonly DependencyProperty OuterTempratureProperty;

 static MyElement()
 {
 OuterTempratureProperty = DependencyProperty.Register(

“OuterTemprature“,
 typeof(Temprature),
 typeof(MyElement),
 null);

}

 public Temprature OuterTemprature
{

get {return (Temprature)GetValue(OuterTempratureProperty);}
 set {SetValue(OuterTempratureProperty, value);}

}
...

}

© 2008 Haim Michael

Dependency Properties Definition

 Calling the DependencyProperty.Register function we

can pass over a PropertyMetaData object through which

we can specify the function we want to be called when a

dependency property changes its value.

© 2008 Haim Michael

Dependency Properties Definition

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Windows;

namespace ConsoleApplication14
{
 public class Program
 {
 static void Main(string[] args)
 {
 Book book = new Book();
 book.Title = "Core Python";
 Console.WriteLine("### "+book.Title+" ###");
 book.Title = "abc";
 Console.WriteLine("### " + book.Title + " ###");
 book.Title = "Core PHP";
 Console.WriteLine("### " + book.Title + " ###");
 book.Title = "a";
 Console.WriteLine("### " + book.Title + " ###");
 }
 }

http://www.youtube.com/watch?v=FKmEilVug-Q

© 2008 Haim Michael

Dependency Properties Definition

 public class Book : DependencyObject
 {
 public static readonly DependencyProperty TitleProperty =
 DependencyProperty.Register(
 "Title",
 typeof(string),
 typeof(Book),
 new PropertyMetadata(
 "No Name", TitleChangedCallback, TitleCoerceCallback),
 TitleValidateCallback);

 private static void TitleChangedCallback(
 DependencyObject obj, DependencyPropertyChangedEventArgs e)
 {
 Console.WriteLine("Log Message: within TitleChangedCallback");
 Console.WriteLine(e.OldValue + " " + e.NewValue);
 }

© 2008 Haim Michael

Dependency Properties Definition

 private static object TitleCoerceCallback(
DependencyObject obj, object o)

 {
 Console.WriteLine("Log Message: within TitleCoerceCallback");
 string str = o as string;
 //here we can validate the title and change it if needed
 if(str.Length>0)
 {
 Console.WriteLine("new title is OK");
 }
 else
 {
 Console.WriteLine("new title is not OK");
 Console.WriteLine("will set 'no name' instead");
 str = "no name";
 }
 return str;
 }

© 2008 Haim Michael

Dependency Properties Definition

 private static bool TitleValidateCallback(object value)
 {
 Console.WriteLine("Log Message: within TitleValidateCallback");
 //return true if there is a place to call the validation method
 return value != null && ((string) value).Length > 2;
 }

 public string Title
 {
 get
 {
 return (string)GetValue(TitleProperty);
 }
 set
 {
 SetValue(TitleProperty, value);
 }
 }
 }

}

© 2008 Haim Michael

Dependency Properties Definition

