
© 2008 Haim Michael (Scala Fundamentals, Traits)

Traits

© 2008 Haim Michael (Scala Fundamentals, Traits)

Introduction

 Traits encapsulate methods and fields definitions we can

reuse by mixing them into classes we define.

 Unlike classes inheritance that allow each class to inherit one

class only, a class can mix in any number of traits.

© 2008 Haim Michael (Scala Fundamentals, Traits)

Trait Definition

 The syntax is the same syntax we use when defining a class.

The only difference is using the 'trait' keyword instead of

'class'.

trait Academic

{

 def think()

 {
println("i think... i exist.")

 }

}

© 2008 Haim Michael (Scala Fundamentals, Traits)

Trait Definition

 Once a trait was defined it can be mixed in to a class using

either the keyword extends or the keyword with.

class Person extends Academic

{

 ...
}

 We can use the keyword with when our class already

extends a specific other class or trait. We cannot use with if

our class extends one trait only.

© 2008 Haim Michael (Scala Fundamentals, Traits)

Trait Definition

 We can use methods inherited from a trait just as any method

inherited from a super class.

 Once a trait is defined we get a new type, similarly to defining

a new class.

© 2008 Haim Michael (Scala Fundamentals, Traits)

Trait Definition

© 2008 Haim Michael (Scala Fundamentals, Traits)

Trait Definition

© 2008 Haim Michael (Scala Fundamentals, Traits)

Trait Definition

 When we want to mix a trait into a class that explicitly extends

another class we should use extends in order to show the

extension from the other class and with in order to show that

we mix-in the trait.

class Teacher extends Student with Academic with Personal

{

 …

}

© 2008 Haim Michael (Scala Fundamentals, Traits)

Trait Definition

 We cannot define a trait with class parameters. Traits don't

have a primary constructor. Traits don't have constructors at

all.

© 2008 Haim Michael (Scala Fundamentals, Traits)

Traits Multiple Inheritance

 Using Traits we can inherit from multiple class-like constructs

and yet stay away of the problematic behavior we know from

multiple inheritance in C++.

 We cannot define a class that extends multiple traits and get

the same implemented method from more than one trait.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10

