
© 2008 Haim Michael (Scala Fundamentals, Traits)

Traits

© 2008 Haim Michael (Scala Fundamentals, Traits)

Introduction

 Traits encapsulate methods and fields definitions we can

reuse by mixing them into classes we define.

 Unlike classes inheritance that allow each class to inherit one

class only, a class can mix in any number of traits.

© 2008 Haim Michael (Scala Fundamentals, Traits)

Trait Definition

 The syntax is the same syntax we use when defining a class.

The only difference is using the 'trait' keyword instead of

'class'.

trait Academic

{

 def think()

 {
println("i think... i exist.")

 }

}

© 2008 Haim Michael (Scala Fundamentals, Traits)

Trait Definition

 Once a trait was defined it can be mixed in to a class using

either the keyword extends or the keyword with.

class Person extends Academic

{

 ...
}

 We can use the keyword with when our class already

extends a specific other class or trait. We cannot use with if

our class extends one trait only.

© 2008 Haim Michael (Scala Fundamentals, Traits)

Trait Definition

 We can use methods inherited from a trait just as any method

inherited from a super class.

 Once a trait is defined we get a new type, similarly to defining

a new class.

© 2008 Haim Michael (Scala Fundamentals, Traits)

Trait Definition

© 2008 Haim Michael (Scala Fundamentals, Traits)

Trait Definition

© 2008 Haim Michael (Scala Fundamentals, Traits)

Trait Definition

 When we want to mix a trait into a class that explicitly extends

another class we should use extends in order to show the

extension from the other class and with in order to show that

we mix-in the trait.

class Teacher extends Student with Academic with Personal

{

 …

}

© 2008 Haim Michael (Scala Fundamentals, Traits)

Trait Definition

 We cannot define a trait with class parameters. Traits don't

have a primary constructor. Traits don't have constructors at

all.

© 2008 Haim Michael (Scala Fundamentals, Traits)

Traits Multiple Inheritance

 Using Traits we can inherit from multiple class-like constructs

and yet stay away of the problematic behavior we know from

multiple inheritance in C++.

 We cannot define a class that extends multiple traits and get

the same implemented method from more than one trait.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10

