Patterns Matching

© 2008 Haim Michael 20160119

Introduction

% The Patterns Matching is one of Scala's constructs that assist

us when working with data structures.

*» Patterns matching is the familiar case statement we know
from C\C++\Java\C#\PHP. Unlike the case statement, it isn't

limited to matching against specific values.

© 2008 Haim Michael 20160119

Match Statement

“* The match expression functions similarly to the switch
statement in Java.

selector match

{

alternatives

J

“* The selector is the expression we want to try to match with

the alternatives.

© 2008 Haim Michael 20160119

Match Statement

“* Doing a patterns match we compare our expression with a

sequence of alternatives.

*» Each alternative starts with the keyword case. Each

alternative includes a pattern and one or more expressions

that will be evaluated when the pattern matches.

%+ The arrow symbol => separates the pattern from the

expression.

© 2008 Haim Michael 20160119

Match Statement

object MatchingDemo
{

def main(args: Array[String])
{

val numbers =
for

{

List(¢(1,0,0,1,1,7,0,0,0)
(num <- numbers)

num match

{

case 1 => println("one")
case 0 => println("zero")

case => println ("unknown")
}

© 2008 Haim Michael 20160119

Match Statement

-

BN Ch\Windows\system32NCMD.exe | = |.[=] |£h

E:\temp_scala>scala MatchingDemo

E:\temp_scala>_

© 2008 Haim Michael 20160119

Logical Operators

*+» We can use comparison operators, such as |, in order to

define multiple cases as one.

© 2008 Haim Michael 20160119

Logical Operators

package com.abelski.samples

object MyScalaDemo extends Application
{

def myfunc (num:Int)

{

num match

{

case 2 | 3 => println("equals 2 or 3")
case => println("all other cases")

}

}
myfunc (2)

)
(11| Tube

© 2008 Haim Michael 20160119

http://www.youtube.com/watch?v=TSHIcI8E_gM

Logical Operators

MyscalaDemo

"C:\Program Files\Java\jdkl.6.0 23\bin\java" -Didea.launc
equals 2 or 3|

Rum

AR

Process finished with exit code 0

X % EAE=NT

© 2008 Haim Michael 20160119

Typed Pattern

“* When dealing in Java with an object we don't know its type
we need to use a series of if-else statements and
instanceof casts in order to check the exact type of our
object before moving forward with casting the type of the

reference we hold in order to invoke the relevant method.

*» Scala allows us to use patterns matching for processing
different code segments in according with the type we are

dealing with.

© 2008 Haim Michael 20160119

Typed Pattern

package com.abelski.samples

object MyScalaDemo extends Application

{
def sayHello (ob:AnyRef) =
{
ob match
{
case ob:Cow => ob.moo ()
case ob:Dog => ob.hau/()
case ob:Cat => ob.miau/()
case => println("hello")
}
}
sayHello (new Dog())

1
You i)

© 2008 Haim Michael 20160119

http://www.youtube.com/watch?v=-JyO4cNHKpk

class

def

class

def

class

def

Typed Pattern

Dog

hau ()= println("hau hau")

Cat

miau () = println("miau miau")
Cow

moo () = println("moooo moooo")

© 2008 Haim Michael 20160119

Typed Pattern

MyscalaDemo

"C:\Program Files\Java\jdkl.6.0 23\bin\java"™ -Didea.launc
hau hau

i
Y|

Process finished with exit code 0

xﬂ%|ﬂg|‘.l

© 2008 Haim Michael 20160119

Functional Patterns Matching

“* We can define a function that uses patterns matching as a

replacement for a series of 1 f£. .else statements.

© 2008 Haim Michael 20160119

Functional Patterns Matching

package com.abelski.samples

object MyScalaDemo extends Application

{
def multiply (numA:Int,numB:Int) :Int =

{

numB match
{
case 0 => 0
case 1 => numA
case => numB + multiply (numB, numA-1)

}

}
println(multiply(3,2));

}
(11| Tube

© 2008 Haim Michael 20160119

http://www.youtube.com/watch?v=4fKrUf8Jk2s

Functional Patterns Matching

Fun & MyscalaDemo

"C:\Program Files\Java\jdkl.6.0 23\bin\java" -Didea.launc
)

[
=)
[il &

: Process finished with exit code 0

© 2008 Haim Michael 20160119

Case Classes

% Adding case to our class definition adds a factory method with

the same name as the name of the class.

% Assuming we define the following classes:
case class Point(x:Double, y:Double) {}

case class Line(pl:Point,p2:Point) {}

We can now instantiate them without using the new keyword:

val ob = Line (Point (4,3),Point (2,2))

© 2008 Haim Michael 20160119

Case Classes

% Adding case to our class definition all arguments in the
parameters list get a val prefix so we get them maintained
as fields.

“* Adding case to our class definition, the compiler adds
natural implementations for the methods toString,
hashCode and equals. These auto generated methods

recursively print, hash and compare the entire tree of the

class.

© 2008 Haim Michael 20160119

Case Classes

*» Calling the == operator is forwarded to the equals
method. Elements of case class compared using the ==

operator will be compared structurally.

*» Case classes support patterns matching and this is their

biggest advantage.

© 2008 Haim Michael 20160119

Patterns Matching

package com.lifemichael.samples
abstract class Expression

case class BinaryOperatorExpression (
operator:String,
rightArgument:Expression,
leftArgument:Expression) extends Expression

case class Number (num:Double) extends Expression

case class UnaryOperatorExpression (
operator:String,
argument :Expression) extends Expression

© 2008 Haim Michael 20160119

Patterns Matching

package com. lifemichael.samples

object PatternsMatchingDemo

{
def main(args: Array[String])
{
println(calc(BinaryOperatorExpression("x",Number(4),Number(Q))))
}
def calc(exp:Expression):Expression =
{
exp match
{
case UnaryOperatorExpression("+",Number(4)) => Number(4)
case BinaryOperatorExpression("x",Number(4),Number(1l)) => Number(4)
case BinaryOperatorExpression("+",Number(4),Number(0)) => Number(4)
case BinaryOperatorExpression("x",Number(4),Number(Q)) => Number(0)
¥
¥
¥

© 2008 Haim Michael 20160119

Patterns Matching

e CAWINDOWS\system 3 2cmd. exe

C:wscala_demo*scalac PatternsMatchingDemo.scala

C:wscala_demo*scala PatternzMatchingDemo
Humber{A.@8>

C:zscala_demoX_

© 2008 Haim Michael 20160119

Case Classes

% The following code sample includes the definition of

Student case class.

© 2008 Haim Michael 20160119

Case Classes

object Demo ({

def main(args: Array[String]) {
val dave = Student ("Dave", 25, 88)
val roze = Student ("Roze", 32, 82)

val jane = Student ("Jane", 24,74)
for (person <- List(dave, roze, jane)) {
person match {
case Student ("Dave", 25, 88) => println("Hi Dave!")

case Student ("Roze", 32,) => println("H1 Roze!")
case Student (name, age, average) =>
println("age: " + age + " year, name: " + name)

}

case class Student (val name: String, val age: Int, val average: Double)

Run Demo

S fLibrary/Java/JavaVirtualMachines/jdk1.8.8_25.jdk/Contents/Home/bin/java ...
Hi Dave!

Hi Roze!

age: 24 year, name: Jane

|€‘
LY

Process Tinished with exit code 8

l
Pl

© 2008 Haim Michael 20160119

Conditional Case Classes

“* The following code sample includes the definition of
Student case class, and the use of additional conditions in

the code.

© 2008 Haim Michael 20160119

Conditional Case Classes

object Demo {

case class Student (val name: String, val age: Int, wval average: Double)

def main(args: Array[String]) {
val dave = Student ("Dave", 25, 88)
val roze = Student ("Roze", 32, 82)
val jane = Student ("Jane", 24,74)
for (person <- List(dave, roze, Jjane)) {

person match {
case Student ("Dave", 25, 88)
=> println("Hi Dave!")
case Student(, , avg) 1f avg>90

=> println("Hi! You are an excellent student!")
case Student(, , avg) 1f avg<=90 && avg>80

=> println("Hi! You are a good student!")
case Student(, , avg) 1f avg<=80

=> println("Hello Student!")

/Users/haimmichael/Library/Java/JavaV

Hi Dave!
Hi! You are a good student!
Hello Student!

1 | P | I 2

Process finished with exit code 0

© 2008 Haim Michael 20160119

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

