
© 2008 Haim Michael (Scala, Java Integration)

Java Integration

© 2008 Haim Michael (Scala, Java Integration)

Introduction

 The Scala programming language is highly compatible with

Java.

 In most cases there shouldn't be any problem combining code

developed in the two languages.

 Popular frameworks such as Java Servlets & JSP, Swing and

JUnit work fine with code developed in Scala.

© 2008 Haim Michael (Scala, Java Integration)

Using Scala from Java

 When calling code developed in Scala from within code

developed in Java we first need to have our code in Scala

translated into Java.

 The Scala programming language is implemented as a

translation to standard Java bytecode.

 When possible, features we know from the Scala

programming language are mapped directly onto their

equivalent Java features.

© 2008 Haim Michael (Scala, Java Integration)

Using Scala from Java

 Make sure the scala-library.jar is available in your

build path. Otherwise, the compilation will fail.

© 2008 Haim Michael (Scala, Java Integration)

Using Scala from Java

class ScalaRectangle(w:Double,h:Double)
{

var width:Double = w
var height: Double = h
def toXML =
<rectangle>

<width>{width}</width>
<height>{height}</height>

</rectangle>
override def toString = "width="+width+" height="+height

}

http://www.youtube.com/watch?v=thzLyX85AUo

© 2008 Haim Michael (Scala, Java Integration)

Using Scala from Java

public class SimpleJavaApplication
{

public static void main(String args[])
{

ScalaRectangle ob = new ScalaRectangle(3,4);
System.out.println(ob);

}
}

© 2008 Haim Michael (Scala, Java Integration)

Using Scala from Java

© 2008 Haim Michael (Scala, Java Integration)

Class Variables

 When using a class that was defined in Scala from code

written in Java the variables (whether val or var) inside the

objects that were instantiated from that class will be

accessible as if they were methods.

© 2008 Haim Michael (Scala, Java Integration)

Class Variables

class Rectangle(_id:Int,_width:Double,_height:Double) {
 val id:Int = _id
 val width:Double = _width
 val height:Double = _height
}

Rectangle.scala

© 2008 Haim Michael (Scala, Java Integration)

Class Variables

public class Program {
 public static void main(String args[]) {
 Rectangle recA = new Rectangle(123123,3,4);
 Rectangle recB = new Rectangle(233343,5,6);
 System.out.println("recA details:");
 System.out.println(recA.id());
 System.out.println(recA.width());
 System.out.println(recA.height());
 }
}

Program.java

© 2008 Haim Michael (Scala, Java Integration)

Class Variables

© 2008 Haim Michael (Scala, Java Integration)

Beans Properties

 When adding the @BeanProperty annotation to a class

variable defined in Scala the classic getter and setter methods

will be generated (e.g. given the width variable we will

automatically get the getWidth and the setWidth

methods).

© 2008 Haim Michael (Scala, Java Integration)

Beans Properties

 When adding the @BooleanBeanProperty annotation we

will get the isFoo variant generated (e.g. given the visible

boolean variable we will automatically get the isVisible

and the setVisible methods).

© 2008 Haim Michael (Scala, Java Integration)

Beans Properties

class Rectangle(_visible:Boolean,_width:Double,_height:Double)
{
 @BooleanBeanProperty
 val visible:Boolean = _visible
 @BeanProperty
 val width:Double = _width
 @BeanProperty
 val height:Double = _height
}

Rectangle.scala

© 2008 Haim Michael (Scala, Java Integration)

Beans Properties

public class Program {
 public static void main(String args[]) {
 Rectangle recA = new Rectangle(true,3,4);
 Rectangle recB = new Rectangle(false,5,6);
 System.out.println("recA details:");
 System.out.println(recA.isVisible());
 System.out.println(recA.getWidth());
 System.out.println(recA.getHeight());
 }
}

Program.java

© 2008 Haim Michael (Scala, Java Integration)

Beans Properties

© 2008 Haim Michael (Scala, Java Integration)

Using Java from Scala

 Using code written in Java from within a code written in Scala

is simpler.

 There is no need in any specific jar file. We can use any class

developed in Java as if it was developed in Scala.

© 2008 Haim Michael (Scala, Java Integration)

Using Java from Scala

public class JavaRectangle
{

private double width;
private double height;
public JavaRectangle(double w, double h)
{

setWidth(w);
setHeight(h);

}
public void setWidth(double val)
{

if(val>0)
{

width = val;
}

}

http://www.youtube.com/watch?v=FwO0zO54QJI

© 2008 Haim Michael (Scala, Java Integration)

Using Java from Scala

public void setHeight(double val)
{

if(val>0)
{

height = val;
}

}
public String toString()
{

return "width="+width+" height="+height;
}

}

© 2008 Haim Michael (Scala, Java Integration)

Using Java from Scala

object SimpleScalaApplication
{

def main(args: Array[String])
{

var ob = new JavaRectangle(4,3);
println(ob);

}
}

© 2008 Haim Michael (Scala, Java Integration)

Using Java from Scala

© 2008 Haim Michael (Scala, Java Integration)

Traits are Interfaces

 Unlike interfaces in Java (up to version 1.7 included), when

we define a trait in Scala we can include methods definitions

as part of the trait.

 Although this difference, the Scala compiler compiles a trait

into an interface.

© 2008 Haim Michael (Scala, Java Integration)

Traits are Interfaces

 When a trait includes an implemented method the

implementation (until Java version 1.7 included) is taken out

of the trait into a new class that its name starts with the name

of the trait together with '$class'.

 We can find the implemented method defined as a static

method with an additional parameter for getting the reference

for the concrete object on which it should be executed.

© 2008 Haim Michael (Scala, Java Integration)

Traits are Interfaces

package com.abelski.scala.samples

trait PowerfulMan
{
 def doAbstractStuff: Unit
 def doConcreteStuff: Unit = println("do the concrete stuff")
}

PowerfuleMan.scala

http://www.youtube.com/watch?v=geet3s_4hTo

© 2008 Haim Michael (Scala, Java Integration)

Traits are Interfaces

package com.abelski.scala.samples;

public class JavaMan implements PowerfulMan
{

public void doAbstractStuff()
{

System.out.println("do the abstract stuff");
}
public void doConcreteStuff()
{

PowerfulMan$class.doConcreteStuff(this);
}

}

PowerfulMan.java

© 2008 Haim Michael (Scala, Java Integration)

Traits are Interfaces

package com.abelski.scala.samples;

public class PowerfulManDemo
{

public static void main(String[] args)
{

PowerfulMan man = new JavaMan();
man.doAbstractStuff();
man.doConcreteStuff();

}

}

PowerfulManDemo.java

© 2008 Haim Michael (Scala, Java Integration)

Traits are Interfaces

© 2008 Haim Michael (Scala, Java Integration)

Exceptions Handling

 Scala doesn't have checked exceptions and it doesn't support

the throws statement. As a result, whenever we define a

function in Scala that might throw an exception one way for

catching it in Java would be by placing a catch statement for

Throwable. Alternatively, we can use the @throws annotation.

© 2008 Haim Michael (Scala, Java Integration)

Exceptions Handling

public class Program {
 public static void main(String args[]) {
 try {
 Utils.doSomething(123,"temp.txt");
 } catch(Throwable e) {
 //...
 }
 }
}

Program.java

© 2008 Haim Michael (Scala, Java Integration)

Exceptions Handling

object Utils {
 def doSomething(num:Int,fileName:String): Unit =

{
 //...
 //...
 }
}

Utils.scala

© 2008 Haim Michael (Scala, Java Integration)

Exceptions Handling

 We can alternatively use the @throws annotation in order to

mark the function we define in Scala as one that might throw

an exception of a specific type.

© 2008 Haim Michael (Scala, Java Integration)

Exceptions Handling

import java.io._

object Utils {
 @throws(classOf[IOException])
 def doSomething(num:Int,fileName:String): Unit = {
 //...
 //...
 }
}

Utils.scala

© 2008 Haim Michael (Scala, Java Integration)

Exceptions Handling

public class Program {
 public static void main(String args[]) {
 try {
 Utils.doSomething(123,"temp.txt");
 } catch(IOException e) {
 //...
 }
 }
}

Program.java

© 2008 Haim Michael (Scala, Java Integration)

Static Members

 Scala doesn't allow us to define static members in our class.

The closest possibility is to define an Object with methods.

 Invoking those methods in code written in Java will be very

similar to invoking static methods.

 Static methods we define in Java will be available in Scala as

methods we invoke on object. The class with those static

methods in Java will be available in Scala as object.

© 2008 Haim Michael (Scala, Java Integration)

Static Members

public class Program {
 public static void main(String args[]) {
 System.out.println("result is "+Utils.sum(3,4));
 }
}

Program.java

object Utils {
 def sum(numA:Int,numB:Int): Int = numA+numB
}

Utils.scala

© 2008 Haim Michael (Scala, Java Integration)

Closures

 Scala allows us to define functions as first class citizens and

to define functions within the scope of other functions.

 In Java, each and every function that was defined in Scala is

an object from an anonymous inner class that extends the

Function1/Function2/Function3... abstract class.

 The Function1/Function2/Function3...Function22

types support up to 22 parameters.

© 2008 Haim Michael (Scala, Java Integration)

Closures

 The function code is placed within the implementation for the

apply method, we should define when extending any of

these abstract classes.

func = new AbstractFunction1<String, String>() {
 public String apply(String arg) {
 return arg + "foo";
 }
 };

© 2008 Haim Michael (Scala, Java Integration)

Annotations

 We can use annotations available in Java frameworks directly

from within the code we developed in Scala. In most cases

the Java framework will identify the annotations as if our code

was written in Java.

 Nevertheless, inventing our own annotations won't be feasible

in Scala. We must write our own annotations in Java and

compile the code using the javac utility.

© 2008 Haim Michael (Scala, Java Integration)

Annotations

 Scala already supports various annotations that assist us with

developing code in Scala and later use it in Java.

 The @SerialVersionUID annotation allows us to specify

the static SerialVersionUID field of a serializable

class.

 The @Cloneable annotation allows us to mark a class as if

we were marking that class as cloneable by implementing the

Cloneable interface.

© 2008 Haim Michael (Scala, Java Integration)

Annotations

 The @Deprecated annotation allows us to mark a class

member as a deprecated one.

 The @Native annotation allows us to mark a method as a

native one.

 The @Serializable annotation allows us to mark a class

as one that implements the Serializable interface.

© 2008 Haim Michael (Scala, Java Integration)

Annotations

 The @Transient annotation allows us to mark a class

variable as a transient one.

 The @Volatile annotation allows us to mark a class

variable as if it was marked with volatile keyword.

© 2008 Haim Michael (Scala, Annotations)

Varied Number of Arguments

 Using the @varargs annotation we can mark a method we

define in Scala as one that receives a variable number of

arguments so we could invoke it that way from code in Java.

object Utils {

 @varargs
 def calc(number:Int*): Int = {
 var sum:Int = 0
 number.foreach(num => sum = sum+num)
 sum
 }
}

© 2008 Haim Michael (Scala, Annotations)

Varied Number of Arguments

public class Program {
 public static void main(String args[]) {
 System.out.println(Utils.calc(2,3,5));
 }
}

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43

