
© 2008 Haim Michael 20160117

Inheritance

© 2008 Haim Michael 20160117

Introduction

 Inheritance is the well known relationship when having one

class that extends the other.

© 2008 Haim Michael 20160117

Abstract Class

 We declare an abstract class by using the abstract

keyword in the class declaration.

 We declare an abstract function by declaring it without a body.
...

abstract class Shape

{

 def area: Double

}

...

© 2008 Haim Michael 20160117

Abstract Class

 Declaring a class with the abstract modifier indicates that the

class might have abstract members and therefore we cannot

instantiate it.

 Methods without implementation are abstract methods.

 Methods that do have a body are considered as concrete

ones.

 Classes that extend an abstract class should include the

definition for its abstract methods.

© 2008 Haim Michael 20160117

Abstract Class

© 2008 Haim Michael 20160117

Abstract Class

© 2008 Haim Michael 20160117

Abstract Class

© 2008 Haim Michael 20160117

Parameter-less Methods

 When defining a method without parameters we can avoid the

parentheses.

class Rectangle(width:Double,height:Double)

{

 def getWidth: Double = width

 def getHeight: Double = height

 def area: Double = width * height

}

© 2008 Haim Michael 20160117

Extending Classes

 We define one class as one that extends another using the

extends keyword.

class Rectangle(width:Double,height:Double) extends Shape

{

 def getWidth: Double = width

 def getHeight: Double = height

}

© 2008 Haim Michael 20160117

Inheritance Meaning

 When having one class that extends another it means that all

members of the base class are also members of the subclass.

 The private members exist in our new class as well. However,

their accessibility is not direct.

© 2008 Haim Michael 20160117

Inheritance Meaning

 When a member our class inherits is already defined in our

class we can say that our class definition for that member

either implements the inherited one (when the inherited one is

abstract) or overrides it (when the inherited one is concrete).

© 2008 Haim Michael 20160117

Overriding Methods & Fields

 We access fields and methods using the same syntax. Fields

and methods belong to the same namespace.

 A field can override a parameter-less method. This way we

can change the implementation from a method to a field.

© 2008 Haim Michael 20160117

Overriding Methods & Fields

© 2008 Haim Michael 20160117

Overriding Methods & Fields

© 2008 Haim Michael 20160117

Overriding Methods & Fields

© 2008 Haim Michael 20160117

Overriding Methods & Fields

 Scala doesn't allow us to define within the same class a field

and a method with the same name.

 Java has four name spaces: fields, methods, types and

packages. Scala has two. Values (fields,methods,packages

and singleton) and types (class and traits).

© 2008 Haim Michael 20160117

Parametric Fields

 We can define a class parameter with the field it targets in

one single definition.

...
class IntGroup(val content: Array[Int]) extends Item

{

 def total:Int =

{

...

 }

}

… w

© 2008 Haim Michael 20160117

Parametric Fields

© 2008 Haim Michael 20160117

Parametric Fields

© 2008 Haim Michael 20160117

Parametric Fields

© 2008 Haim Michael 20160117

Invoking Super Class Constructors

 We can place a call to specific super class constructor by

placing the argument \ arguments we want to pass in

parentheses following the name of the superclass.

...
class IntGroup(val content: Array[Int]) extends Item(“mygrp”)

{

 ...

}

...

© 2008 Haim Michael 20160117

The override Modifier

 When overriding a concrete member in a parent class we

must use the override modifier. When overriding an abstract

member this modifier is optional.

© 2008 Haim Michael 20160117

Polymorphism

 The Scala programming language supports polymorphism.

© 2008 Haim Michael 20160117

Final Class

 Adding the final modifier to specific class will ensure that it

won't be possible to extend it.

final class Box

{

 ...

}

© 2008 Haim Michael 20160117

Final Method

 Adding the final modifier to specific method will ensure that it

won't be possible to override it.

class Box

{

 ...

 final def getId:Int = id

 ...

}

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

