
© 2008 Haim Michael. 20150117

Functions

© 2008 Haim Michael. 20150117

Introduction

 In addition to defining a function as a method, Scala allows us

to define other types of functions such as local functions and

anonymous ones.

© 2008 Haim Michael. 20150117

Method

 The simplest most common form of a function is defining it as

a method.

 Method is a simple function defined within the scope of a

class or an object.

© 2008 Haim Michael. 20150117

Method

© 2008 Haim Michael. 20150117

Method

© 2008 Haim Michael. 20150117

Local Functions

 The Scala programming language allows us to define a local

function, which is a function we define within the scope of

another function.

 Local functions are visible in their enclosing block only.

 The local function can use variables defined within the scope

of its enclosing function.

 The local function can be invoked from within the scope of the

outer function only.

© 2008 Haim Michael. 20150117

Local Functions

© 2008 Haim Michael. 20150117

Local Functions

© 2008 Haim Michael. 20150117

Anonymous Functions

 We can define a function without a name, and pass it over

whether into a specific variable or into a method parameter as

if it was a value.

 During run-time each anonymous function is compiled into a

class and instantiated. The instantiated object is the value we

pass over.

© 2008 Haim Michael. 20150117

Anonymous Functions

 The anonymous functions are also known as first class

functions.
...

var increment = (i:Int) => i+1

var num = increment(5)

...

© 2008 Haim Michael. 20150117

Anonymous Functions

© 2008 Haim Michael. 20150117

Anonymous Functions

© 2008 Haim Michael. 20150117

Anonymous Functions

 When defining an annonymous function we can place more

than one statement. We should place all statements within a

block.

© 2008 Haim Michael. 20150117

Anonymous Functions

© 2008 Haim Michael. 20150117

Anonymous Functions

© 2008 Haim Michael. 20150117

Anonymous Functions

 Many of the classes the Scala library includes already allow

us to use functions literals passing them over to functions we

call.

 One example is the filter method we can call on a List object

passing over a function that once called on each one of the

List elements it returns true or false.

 It is possible to omit the parameters' types.

© 2008 Haim Michael. 20150117

Anonymous Functions

© 2008 Haim Michael. 20150117

Anonymous Functions

© 2008 Haim Michael. 20150117

Anonymous Functions

 When creating an anonymous function and passing it over as

an argument to another function we can use a placeholder

and avoid the left part of the function.
...

var ob:List[Int] = List[Int](13,54,35,5,7)

println(ob.filter(_%5==0))

...

© 2008 Haim Michael. 20150117

Anonymous Functions

© 2008 Haim Michael. 20150117

Anonymous Functions

© 2008 Haim Michael. 20150117

Anonymous Functions

 When using underscores as placeholders for parameters the

compiler might not have enough information in order to infer

the missing parameter types. In these cases we can specify

the type using a colon in the following way.
...

var doSomething = (_:Double)+(_:Double)

var num = doSomething(5,4.2)

...

© 2008 Haim Michael. 20150117

Repeated Parameters

 When placing an asterisk after the type of the last parameter

we allow calling our function with a variable number of

arguments. The last argument can be passed over any

number of times. Including 0.

© 2008 Haim Michael. 20150117

Repeated Parameters

© 2008 Haim Michael. 20150117

Repeated Parameters

© 2008 Haim Michael. 20150117

Tail Recursion

 If the last action a function performs is calling to itself then it is

a tail recursive function. When a tail recursive function is

executed the computer doesn't need to keep the memory

stack frames. It can use one frame only.

 When having tail recursion we can use the @tailrec in order

to instruct the compiler to avoid keeping the stack frames and

use one frame only. Doing so the performance will be

significantly improved.

© 2008 Haim Michael. 20150117

Tail Recursion
import annotation.tailrec

object Program
{
 def main(args: Array[String]):Unit =
 {
 println(factorial(4))
 }

 def factorial(num:Int):Int =
 {
 @tailrec
 def calculate(accumulator:Int,number:Int):Int =
 {
 if(number==0)
 accumulator
 else
 calculate(accumulator*number,number-1)
 }
 calculate(1,num)
 }
}

http://www.youtube.com/watch?v=P0l8evhucqw

© 2008 Haim Michael. 20150117

Function Type

 We can define variables, function parameters and even

function returned values to be of a function type.

(A,B) => C

The A,B and C letters stand for types.

© 2008 Haim Michael. 20150117

Function Type

import annotation.tailrec

object Program
{
 def main(args: Array[String]):Unit =
 {
 var func:(Int,Int)=>Int = sum;
 println(func(4,3))
 func = multiply
 println(func(4,3))
 }
 def sum(a:Int,b:Int):Int = a+b
 def multiply(a:Int,b:Int):Int = a*b
}

http://www.youtube.com/watch?v=KVK0QZ4zq24

© 2008 Haim Michael. 20150117

By Names Parameters

 When calling a function and passing over an argument which

is an expression that needs to be evaluated, the expression

will be evaluated before the function is invoked and its value

will be passed over. This is the default behavior.

 By adding => in between the parameter name and its type we

will defer the expression evaluation into the function execution

to be performed when its value is required.

© 2008 Haim Michael. 20150117

By Names Parameters

package il.ac.hit.samples

object Program
{
 def main(args: Array[String])
 {
 println(System.currentTimeMillis())
 printWithDelay(System.currentTimeMillis())
 }

 def printWithDelay(t: => Long) =
 {
 Thread.sleep(10000)
 println(t)
 }
}

http://www.youtube.com/watch?v=uhwIgQro6As

© 2008 Haim Michael. 20150117

Function Values are Objects

 Function values are treated as objects. The function A=>B is

an abbreviation for using a new object instantiated from a

class that extends the scala.Function1[A,B] trait and

overrides the apply function.

 There are currently Function1, Function2, Function3...

etc... up to Function22, that takes 22 parameters.

© 2008 Haim Michael. 20150117

Function Values are Objects

object HelloSample
{
 def main(args:Array[String]):Unit =
 {
 val func1 = (num:Int) => 2*num
 println(func1(4))
 val func2 = new MyFunction
 println(func2(4))
 }
}

// (num:Int) => 2*num
class MyFunction extends Function1[Int,Int]
{
 def apply(num:Int) = 2*num
}

http://www.youtube.com/watch?v=dodw75BM9VQ
http://www.youtube.com/watch?v=hoC3PgbHW8o

© 2008 Haim Michael. 20150117

Anonymous Class Syntax

 When calling a function we indirectly invoke the apply method

on the object that represents the function. We can use the

anonymous class syntax.

val func = (x:Int) => 2 * x

func(3)

would be equivalent to:

val func = new Function1[Int,Int]

{

 def apply(x:Int) = 2 * x

}

func.apply(3)

© 2008 Haim Michael. 20150117

The Postfix Notation

 When enabling the postfix notation we can call a method on a

specific object without using the dot (.).

 In order to enable this unique feature we should add the

following to our code

import scala.language.postfixOps

© 2008 Haim Michael. 20150117

The Postfix Notation

package il.ac.hit.courses.functional.scala.samples

import scala.language.postfixOps

object PostfixDemo {
 def main(args: Array[String]): Unit = {
 var ob = new Something()
 var text = ob toString
 }
}

class Something

© 2008 Haim Michael. 20150117

The Curley Brackets Syntax

 When calling a function we can e curly brackets instead of

parentheses for passing over the arguments to the function.

object TheBracketsSyntax {
 def main(args: Array[String]): Unit = {
 //gaga(5)
 gaga {5}
 }
 def gaga(num: Int):Unit = {
 print(num)
 }
}

© 2008 Haim Michael. 20150117

Symbolic Methods

 Scala allows us to define methods their names includes

symbols instead of regular letters. Given the infix optional

notation we can use that for creating new customized

operators.

© 2008 Haim Michael. 20150117

Symbolic Methods

object Program {
 def main(args: Array[String]): Unit = {
 var a = new Circle(4)
 var b = new Circle(5)
 var c = a ^+^ b
 }
}

class Circle(rad: Double)
{
 private var radius = rad
 def ^+^ (ob:Circle):Circle = new Circle(this.radius+ob.radius)
 override def toString():String = "radius="+radius
}

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39

