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Control Statements
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Introduction

 Scala supports the following built in control structures: if,

while, for, try and match.
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The Return Value

 Most of Scala's supported control statements return a value.

 This behavior is common to functional programming

languages. This behavior assists us shorten the code. 
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The if Expression

 Just as in many other programming languages, if the boolean

expression is true then code branch is executed. 

if(condition) 

{

 …

}
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The if Expression

 The if expression returns a value which is either the first

expression or the second. We can use that for assigning an

if else expression into a variable.

...

var name = if(num>0) ”canada” else ”israel”

...
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The while Loop

 The while loop works the same as in other software

programming languages.
...

while(condition) 

{

//do something

}

...
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The do..while Loop

 The do while loop works the same as in other software

programming languages.
...

do 

{

//do something

}

while(condition)

...
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The for Expression

 The for expression allows us to use it in several ways. 

 The simplest way is iterating through all elements of a given

collection. 
...

for(str <- vec)

{

println(str)

}

...
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The for Expression

 The for expression can also work on range of values. 

...

for(i<- 1 to 8)

{

println(”i=”+i)

}

...
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The for Expression

 We can iterate till the upper bound (included) using the to 

keyword.
...

for(i<- 1 to 8)

{

println(”i=”+i)

}

...
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The for Expression

 We can iterate till the upper bound (excluded) using the

until keyword.

...

for(i<- 1 until 8)

{

println(”i=”+i)

}

...
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The for Expression

 Adding the filter expression we can iterate all values excluding

those that don't meet the condition the filter sets. 
...

val vec = Array(1,2,3,4,5,6,7,8,9,10)

for(i<- vec if(i%2==0))

{

println(”i=”+i)

}

...



© 2008 Haim Michael

The for Expression
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The for Expression
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The for Expression

 Complex filters conditions composed of several separated

conditions are feasible.
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The for Expression

 We can add multiple <- clauses in order to get nested loops. 
...

var rows = Array(1,2,3,4,5,6,7,8,9,10)

var cols = Array(1,2,3,4,5,6,7,8,9,10)

for(row <- rows)

{

for(col <- cols)

print(row*col+"\t")

println()

}

...
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The for Expression
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The for Expression
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The for Expression

 We can alternatively add multiple <- clauses within the same

brackets. 
...

var rows = Array(1,2,3,4,5,6,7,8)

var cols = Array(1,2,3,4,5,6,7,8)

var sum: Int = 0

for(row <- rows;col <- cols)

 sum += row*col

println(sum)

...
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The for Expression
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The for Expression
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The for-yield Expression

 We can iterate a given collection and generate a new one

based on the elements we iterate. 

 The syntax of the for-yield expression is 

for{clauses} yield body

The following code sample creates a new collection based on

a given one.
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The for-yield Expression
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The for-yield Expression
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The match Expression

 The match expression is similar to the well known switch 

expression. 
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The match Expression

object MatchDemo
{

def main(args: Array[String])
{

val name = "dave"
name match
{

case "dave" => println("D D Dave!")
case "java" => println("Janina J")
case "fred" => println("frida fRedy")

}
}

}
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The match Expression
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Break & Continue

 The Scala programming language doesn't support break 

and continue.
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Variables Scope

 The Scala programming language supports variables scope

the same way Java does.
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