
© 2008 Haim Michael

Control Statements



© 2008 Haim Michael

Introduction

 Scala supports the following built in control structures: if,

while, for, try and match.



© 2008 Haim Michael

The Return Value

 Most of Scala's supported control statements return a value.

 This behavior is common to functional programming

languages. This behavior assists us shorten the code. 



© 2008 Haim Michael

The if Expression

 Just as in many other programming languages, if the boolean

expression is true then code branch is executed. 

if(condition) 

{

 …

}



© 2008 Haim Michael

The if Expression

 The if expression returns a value which is either the first

expression or the second. We can use that for assigning an

if else expression into a variable.

...

var name = if(num>0) ”canada” else ”israel”

...



© 2008 Haim Michael

The while Loop

 The while loop works the same as in other software

programming languages.
...

while(condition) 

{

//do something

}

...



© 2008 Haim Michael

The do..while Loop

 The do while loop works the same as in other software

programming languages.
...

do 

{

//do something

}

while(condition)

...



© 2008 Haim Michael

The for Expression

 The for expression allows us to use it in several ways. 

 The simplest way is iterating through all elements of a given

collection. 
...

for(str <- vec)

{

println(str)

}

...



© 2008 Haim Michael

The for Expression

 The for expression can also work on range of values. 

...

for(i<- 1 to 8)

{

println(”i=”+i)

}

...



© 2008 Haim Michael

The for Expression

 We can iterate till the upper bound (included) using the to 

keyword.
...

for(i<- 1 to 8)

{

println(”i=”+i)

}

...



© 2008 Haim Michael

The for Expression

 We can iterate till the upper bound (excluded) using the

until keyword.

...

for(i<- 1 until 8)

{

println(”i=”+i)

}

...



© 2008 Haim Michael

The for Expression

 Adding the filter expression we can iterate all values excluding

those that don't meet the condition the filter sets. 
...

val vec = Array(1,2,3,4,5,6,7,8,9,10)

for(i<- vec if(i%2==0))

{

println(”i=”+i)

}

...



© 2008 Haim Michael

The for Expression



© 2008 Haim Michael

The for Expression



© 2008 Haim Michael

The for Expression

 Complex filters conditions composed of several separated

conditions are feasible.



© 2008 Haim Michael

The for Expression

 We can add multiple <- clauses in order to get nested loops. 
...

var rows = Array(1,2,3,4,5,6,7,8,9,10)

var cols = Array(1,2,3,4,5,6,7,8,9,10)

for(row <- rows)

{

for(col <- cols)

print(row*col+"\t")

println()

}

...



© 2008 Haim Michael

The for Expression



© 2008 Haim Michael

The for Expression



© 2008 Haim Michael

The for Expression

 We can alternatively add multiple <- clauses within the same

brackets. 
...

var rows = Array(1,2,3,4,5,6,7,8)

var cols = Array(1,2,3,4,5,6,7,8)

var sum: Int = 0

for(row <- rows;col <- cols)

 sum += row*col

println(sum)

...



© 2008 Haim Michael

The for Expression



© 2008 Haim Michael

The for Expression



© 2008 Haim Michael

The for-yield Expression

 We can iterate a given collection and generate a new one

based on the elements we iterate. 

 The syntax of the for-yield expression is 

for{clauses} yield body

The following code sample creates a new collection based on

a given one.



© 2008 Haim Michael

The for-yield Expression



© 2008 Haim Michael

The for-yield Expression



© 2008 Haim Michael

The match Expression

 The match expression is similar to the well known switch 

expression. 



© 2008 Haim Michael

The match Expression

object MatchDemo
{

def main(args: Array[String])
{

val name = "dave"
name match
{

case "dave" => println("D D Dave!")
case "java" => println("Janina J")
case "fred" => println("frida fRedy")

}
}

}



© 2008 Haim Michael

The match Expression



© 2008 Haim Michael

Break & Continue

 The Scala programming language doesn't support break 

and continue.



© 2008 Haim Michael

Variables Scope

 The Scala programming language supports variables scope

the same way Java does.


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29

