
© 2008 Haim Michael (Scala, Concurrency)

Concurrency

© 2008 Haim Michael (Scala, Concurrency)

Introduction

 The Scala programming language support for threads is

based on the Java programming language.

 Using the Actors System provided by the Akka framework the

development of complex concurrent applications is simplified.

© 2008 Haim Michael (Scala, Concurrency)

The Runnable Trait

 The Runnable interface we know in Java is available as the

Runnable trait. It includes one abstract method. The run()

method, that returns no value.

 We should instantiate a class that extends Runnable and

overrides its abstract method, and pass over its reference to

the Thread constructor.

© 2008 Haim Michael (Scala, Concurrency)

The Runnable Trait

 Once the Thread object is created we should invoke the

start() method on it. As a result, the run() method will

start running in a separated thread.

 Once the start() method was invoked we cannot invoke it

again.

© 2008 Haim Michael (Scala, Concurrency)

The Runnable Trait

object Main {

 def main(args:Array[String]):Unit = {

 val thread : Thread = new Thread(
 new Runnable {
 def run(): Unit = {
 for(num <- 1 to 10) {
 println(num)
 Thread.sleep(500)
 }
 }
 }
)

 thread.start

 }
}

© 2008 Haim Michael (Scala, Concurrency)

The Executors Object

 The Executors object includes the definition for various

methods that can get us an ExecutorService object.

 One of the methods we can invoke on the Executors object

is the newFixedThreadPool method that returns an

ExecutorService object.

© 2008 Haim Michael (Scala, Concurrency)

The Executors Object

 The ExecutorService object returned by the

newFixedThreadPool method represents a pool of threads.

 We can invoke the execute method on the

ExecutorService object we got and pass over a

Runnable object we want its run method to be executed on

a separated thread.

© 2008 Haim Michael (Scala, Concurrency)

The Executors Object

object Main {

 def main(args:Array[String]):Unit = {

 var runnerA = new Runnable {
 override def run(): Unit = {
 for(num <- 1 to 5) {
 println("A")
 Thread.sleep(100)
 }
 }
 }

var runnerB = new Runnable {
 override def run(): Unit = {
 for(num <- 1 to 5) {
 println("B")
 Thread.sleep(100)
 }
 }
 }

© 2008 Haim Michael (Scala, Concurrency)

The Executors Object

 val pool = Executors.newFixedThreadPool(3)

 pool.execute(runnerA)
 pool.execute(runnerB)

 }
}

© 2008 Haim Michael (Scala, Concurrency)

The Future Trait

 The Future trait represents an asynchronous computation.

When we invoke the get() function on a Future object we

will get the result of the asynchronous computation it

represents. If the computation still hasn't ended we will be

blocked.

© 2008 Haim Michael (Scala, Concurrency)

The Future Trait

object Main {

 def main(args:Array[String]):Unit = {

 val future = new FutureTask[Int](
 new Callable[Int] {
 override def call(): Int = {
 var sum:Int = 0
 for(num <- 1 to 1000) {
 sum += num
 Thread.sleep(10)
 }
 sum
 }
 }
)

 val pool = Executors.newFixedThreadPool(4)
 pool.execute(future)
 println(future.get)

 }
}

© 2008 Haim Michael (Scala, Concurrency)

Synchronization

 Scala allows us to create a synchronized block by using the

synchronized keyword followed with the block we want to

synchronize.

© 2008 Haim Michael (Scala, Concurrency)

Synchronization

package com.lifemichael.samples

import java.util.concurrent._

object Main {

 def main(args:Array[String]):Unit = {

 val stack:MyStack = new MyStack
 stack.push(12)
 stack.push(32)
 stack.push(42)
 print("stack.pop()... "+stack.pop)

 }
}

© 2008 Haim Michael (Scala, Concurrency)

Synchronization

object MyStack {

 private val numbers:Array[Int] = Array[Int](10)
 private var index:Int = 0

 def pop:Int = {
 this.synchronized {
 index -= 1
 this.numbers(index)
 }
 }

 def push(num:Int) = {
 this.synchronized {
 numbers(index) = num
 index += 1
 }
 }

}

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

