
© 2008 Haim Michael (Scala, Concurrency)

Concurrency

© 2008 Haim Michael (Scala, Concurrency)

Introduction

 The Scala programming language support for threads is

based on the Java programming language.

 Using the Actors System provided by the Akka framework the

development of complex concurrent applications is simplified.

© 2008 Haim Michael (Scala, Concurrency)

The Runnable Trait

 The Runnable interface we know in Java is available as the

Runnable trait. It includes one abstract method. The run()

method, that returns no value.

 We should instantiate a class that extends Runnable and

overrides its abstract method, and pass over its reference to

the Thread constructor.

© 2008 Haim Michael (Scala, Concurrency)

The Runnable Trait

 Once the Thread object is created we should invoke the

start() method on it. As a result, the run() method will

start running in a separated thread.

 Once the start() method was invoked we cannot invoke it

again.

© 2008 Haim Michael (Scala, Concurrency)

The Runnable Trait

object Main {

 def main(args:Array[String]):Unit = {

 val thread : Thread = new Thread(
 new Runnable {
 def run(): Unit = {
 for(num <- 1 to 10) {
 println(num)
 Thread.sleep(500)
 }
 }
 }
)

 thread.start

 }
}

© 2008 Haim Michael (Scala, Concurrency)

The Executors Object

 The Executors object includes the definition for various

methods that can get us an ExecutorService object.

 One of the methods we can invoke on the Executors object

is the newFixedThreadPool method that returns an

ExecutorService object.

© 2008 Haim Michael (Scala, Concurrency)

The Executors Object

 The ExecutorService object returned by the

newFixedThreadPool method represents a pool of threads.

 We can invoke the execute method on the

ExecutorService object we got and pass over a

Runnable object we want its run method to be executed on

a separated thread.

© 2008 Haim Michael (Scala, Concurrency)

The Executors Object

object Main {

 def main(args:Array[String]):Unit = {

 var runnerA = new Runnable {
 override def run(): Unit = {
 for(num <- 1 to 5) {
 println("A")
 Thread.sleep(100)
 }
 }
 }

var runnerB = new Runnable {
 override def run(): Unit = {
 for(num <- 1 to 5) {
 println("B")
 Thread.sleep(100)
 }
 }
 }

© 2008 Haim Michael (Scala, Concurrency)

The Executors Object

 val pool = Executors.newFixedThreadPool(3)

 pool.execute(runnerA)
 pool.execute(runnerB)

 }
}

© 2008 Haim Michael (Scala, Concurrency)

The Future Trait

 The Future trait represents an asynchronous computation.

When we invoke the get() function on a Future object we

will get the result of the asynchronous computation it

represents. If the computation still hasn't ended we will be

blocked.

© 2008 Haim Michael (Scala, Concurrency)

The Future Trait

object Main {

 def main(args:Array[String]):Unit = {

 val future = new FutureTask[Int](
 new Callable[Int] {
 override def call(): Int = {
 var sum:Int = 0
 for(num <- 1 to 1000) {
 sum += num
 Thread.sleep(10)
 }
 sum
 }
 }
)

 val pool = Executors.newFixedThreadPool(4)
 pool.execute(future)
 println(future.get)

 }
}

© 2008 Haim Michael (Scala, Concurrency)

Synchronization

 Scala allows us to create a synchronized block by using the

synchronized keyword followed with the block we want to

synchronize.

© 2008 Haim Michael (Scala, Concurrency)

Synchronization

package com.lifemichael.samples

import java.util.concurrent._

object Main {

 def main(args:Array[String]):Unit = {

 val stack:MyStack = new MyStack
 stack.push(12)
 stack.push(32)
 stack.push(42)
 print("stack.pop()... "+stack.pop)

 }
}

© 2008 Haim Michael (Scala, Concurrency)

Synchronization

object MyStack {

 private val numbers:Array[Int] = Array[Int](10)
 private var index:Int = 0

 def pop:Int = {
 this.synchronized {
 index -= 1
 this.numbers(index)
 }
 }

 def push(num:Int) = {
 this.synchronized {
 numbers(index) = num
 index += 1
 }
 }

}

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

