Concurrency

© 2008 Haim Michael (Scala, Concurrency)

Introduction

% The Scala programming language support for threads is

based on the Java programming language.

** Using the Actors System provided by the Akka framework the

development of complex concurrent applications is simplified.

© 2008 Haim Michael (Scala, Concurrency)

The Runnable Trait

<+ The Runnable interface we know in Java is available as the

Runnable trait. It includes one abstract method. The run ()

method, that returns no value.

*+ We should instantiate a class that extends Runnable and
overrides its abstract method, and pass over its reference to

the Thread constructor.

© 2008 Haim Michael (Scala, Concurrency)

The Runnable Trait

*+ Once the Thread object is created we should invoke the

start () method on it. As a result, the run () method will

start running in a separated thread.

%+ Once the start () method was invoked we cannot invoke it

again.

© 2008 Haim Michael (Scala, Concurrency)

The Runnable Trait

object Main {
def main(args:Array[String]) :Unit = {

val thread : Thread
new Runnable {
def run(): Unit = {
for(num <- 1 to 10) {
println (num)
Thread.sleep (500)

new Thread (

} Run Main
) > /fLibrary/Java/JavaVirtualMachines/jdk1.8.0_25.jdk,
1
E ; 2
thread.start = i
= 5
o=
J qE 7
} o B
2o I 9
........ 198

© 2008 Haim Michael (Scala, Concurrency)

The Executors Object

*+ The Executors object includes the definition for various

methods that can get us an ExecutorService object.

% One of the methods we can invoke on the Executors object
IS the newFixedThreadPool method that returns an

ExecutorService object.

© 2008 Haim Michael (Scala, Concurrency)

The Executors Object

% The ExecutorService object returned by the

newFixedThreadPool method represents a pool of threads.

“+» We can invoke the execute method on the
ExecutorService object we got and pass over a

Runnable object we want its run method to be executed on

a separated thread.

© 2008 Haim Michael (Scala, Concurrency)

The Executors Object

object Main {

def main(args:Array[String]) :Unit = {
var runnerA = new Runnable {
override def run(): Unit = {

for(num <- 1 to 5) {
println ("A")
Thread.sleep(100)
}

}

var runnerB = new Runnable {
override def run(): Unit = {
for(num <- 1 to 5) {
println ("B")
Thread.sleep(100)
}

© 2008 Haim Michael (Scala, Concurrency)

The Executors Object

val pool = Executors.newFixedThreadPool (3)

pool.execute (runnerh)
pool.execute (runnerB)

}
}
Run: 1 Main 1 Main
G 1 fLibrary/Java/JavaVirtualMachines/jdkl.8.8_25
“ B
H 4 A
m —1:. B
o= a
BB
5 s
........ B A
Qo [B
........ A

© 2008 Haim Michael (Scala, Concurrency)

The Future Trait

% The Future trait represents an asynchronous computation.

When we invoke the get () function on a Future object we

will get the result of the asynchronous computation it

represents. If the computation still hasn't ended we will be
blocked.

© 2008 Haim Michael (Scala, Concurrency)

The Future Trait

object Main {

def main(args:Array[String]) :Unit = {
val future = new FutureTask[Int] (Run: | (7 main | = Main | (7, wain ISR
new Cal l able [Int] { c ;E;gggryﬁ]avamavavlrtuall‘dachlnes
override def call(): Int = { =
var sum:Int = 0

for(num <- 1 to 1000) {
sum += num
Thread.sleep (10)

}

sSum

)

val pool = Executors.newFixedThreadPool (4)
pool.execute (future)
println (future.get)

© 2008 Haim Michael (Scala, Concurrency)

Synchronization

% Scala allows us to create a synchronized block by using the
synchronized keyword followed with the block we want to

synchronize.

© 2008 Haim Michael (Scala, Concurrency)

Synchronization

package com.lifemichael.samples

import java.util.concurrent.

object Main {

def main(args:Array[String]) :Unit = {

val stack:MyStack = new MyStack
stack.push (12)

stack.push (32)
stack.push (42)

print("stack.pop() ... "+stack.pop)

© 2008 Haim Michael (Scala, Concurrency)

Synchronization

object MyStack {

private val numbers:Array[Int] = Array[Int] (10)
private var index:Int = 0

def pop:Int = {
this.synchronized ({
index -= 1
this.numbers (index)

}

def push (num:Int) = {
this.synchronized {
numbers (index) = num
index += 1

Run

'S J/Library/Java/JavaVirtualMachines/jdk1.8.0_25. jdk/Contents/Home/bin/java ...

stack.pop()... 42
} Process Tinished with exit code @

© 2008 Haim Michael (Scala, Concurrency)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

