
© 2008 Haim Michael (Scala, Objects Comparison)

Objects Comparisons

© 2008 Haim Michael (Scala, Objects Comparison)

Introduction

 The Scala programming language support for equality is

different comparing with the one we know in Java.

© 2008 Haim Michael (Scala, Objects Comparison)

The eq Operator

 Comparing two objects using the eq operator is true if the two

references are the same. They refer the same object.

© 2008 Haim Michael (Scala, Objects Comparison)

The eq Operator

© 2008 Haim Michael (Scala, Objects Comparison)

The eq Operator

© 2008 Haim Michael (Scala, Objects Comparison)

The ne Operator

 Comparing two objects using the ne operator is true if the two

references are different. They refer different objects.

© 2008 Haim Michael (Scala, Objects Comparison)

The ne Operator

object Demo {
 def main(args:Array[String]):Unit = {
 val a = Rectangle(3,4)
 val b = Rectangle(3,4)
 if(a ne b) println("a ne b")
 }
}

case class Rectangle(private var width:Double,private var height:Double)

© 2008 Haim Michael (Scala, Objects Comparison)

The equals Method

 Comparing two objects using the equals method inherited

from Object returns true if the two references refer to the very

same object.

 Overriding this method we should override the hashCode

method as well. Otherwise, we might get into unexpected

behavior when working with collections such as Hashset.

© 2008 Haim Michael (Scala, Objects Comparison)

The equals Method

package com.abelski.samples

import java.io.PrintWriter;
import java.io.File;

object MyScalaDemo extends Application
{
 val obA = new SportiveWeight(8)
 val obB = new SportiveWeight(10)
 val obC = new SportiveWeight(8)
 if(obA.equals(obB))
 {
 println("obA and obB are the same")
 }
 if(obA.equals(obC))
 {
 println("obA and obC are the same")
 }
}

http://www.youtube.com/watch?v=OLjWbYiHATM

© 2008 Haim Michael (Scala, Objects Comparison)

The equals Method

class SportiveWeight(number:Int)
{
 private var weightvalue:Int = if(number>0)number else 10
 def weight_=(Int:Double)
 {
 weightvalue = number
 }
 def weight = weightvalue
 override def equals(ob:Any):Boolean =
 {
 ob match
 {
 case ob:SportiveWeight => this.weight==ob.weight
 case _ => false
 }
 }
 override def hashCode = weightvalue
}

© 2008 Haim Michael (Scala, Objects Comparison)

The equals Method

© 2008 Haim Michael (Scala, Objects Comparison)

Case Classes

 When defining a case class we will get an automatic new

implementation for the equals method. Other methods we

automatically get their implementation include the toString

and hashCode.

© 2008 Haim Michael (Scala, Objects Comparison)

Case Classes

object Demo {
 def main(args:Array[String]):Unit = {

 var ob1 = Rectangle(3,4)
 var ob2 = Rectangle(3,4)
 if(ob1 eq ob2) println("ob1 eq ob2") else println("ob1 is not eq ob2")
 if(ob1==ob2) println("ob1==ob2") else println("ob1 is not == ob2")

 }
}

case class Rectangle(private var width:Double,private var height:Double)

© 2008 Haim Michael (Scala, Objects Comparison)

Comparing Strings

 When comparing two strings using the == operator it is the

same as comparing two different objects from the same class.

Indirectly the equals method is invoked.

 For that reason, comparing strings in Scala is different

comparing with what we know in Java.

© 2008 Haim Michael (Scala, Objects Comparison)

Comparing Strings

object Demo {
 def main(args:Array[String]):Unit = {
 var a:String = "abcefghij".substring(2)
 var b:String = "abcefghij".substring(2)
 if(a==b) println("a==b")
 }
}

© 2008 Haim Michael (Scala, Objects Comparison)

Comparing Value Type Values

 When comparing two value type values using the == operator

it is the same as with comparing any two objects.

 When the two value type values are of different types, before

the comparison takes place new object will created in order to

have a comparison of two objects of the same value type.

© 2008 Haim Michael (Scala, Objects Comparison)

Comparing Value Type Values

object Demo {
 def main(args:Array[String]):Unit = {
 val a:Int = 12
 val b:Double = 12.0
 if(a==b) println("a==b")
 }
}

© 2008 Haim Michael (Scala, Objects Comparison)

The hashCode Function

 When overriding the equals method we must also override

the hashCode method.

 If two objects are equal according to the equals method then

calling the hashCode method on each one of the two objects

should return the same integer value.

 If we avoid this rule then collections as Set and Map will not

work as expected.

© 2008 Haim Michael (Scala, Objects Comparison)

The hashCode Function

class Point(val x:Int, val y:Int) {
 override def hashCode = 12 * (12+x) + y
 override def equals(other:Any):Boolean = {
 other match
 {
 case other: Point => this.x == other.x && this.y == other.y
 case _ => false
 }
 }
}

Make sure the other parameter of the equals
method is of the Any type. Otherwise, it won't
be overriding. It will be overloading.

© 2008 Haim Michael (Scala, Objects Comparison)

The hashCode Function

object Demo {
 def main(args:Array[String]):Unit = {
 val a = new Point(3,4)
 val b = new Point(3,4)
 if(a equals b) println("a equal b")
 }
}

© 2008 Haim Michael (Scala, Objects Comparison)

The hashCode Function

 When defining our class as a case class then both the

hashCode and the equals methods are automatically

defined for us.

© 2008 Haim Michael (Scala, Objects Comparison)

The == Operator

 Comparing two objects using the == operator we will get

indirect invocation for the equals method.

 We can override the equals method and by doing so

influence the way the == operator works.

© 2008 Haim Michael (Scala, Objects Comparison)

The == Operator

class Point(val x:Int, val y:Int) {
 override def hashCode = 12 * (12+x) + y
 override def equals(other:Any):Boolean = {
 other match
 {
 case other: Point => this.x == other.x && this.y == other.y
 case _ => false
 }
 }
}

© 2008 Haim Michael (Scala, Objects Comparison)

The == Operator

object Demo {
 def main(args:Array[String]):Unit = {
 val a = new Point(3,4)
 val b = new Point(3,4)
 if(a==b) println("a==b")
 }
}

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

