
© 2008 Haim Michael (Scala, Objects Comparison)

Objects Comparisons

© 2008 Haim Michael (Scala, Objects Comparison)

Introduction

 The Scala programming language support for equality is

different comparing with the one we know in Java.

© 2008 Haim Michael (Scala, Objects Comparison)

The eq Operator

 Comparing two objects using the eq operator is true if the two

references are the same. They refer the same object.

© 2008 Haim Michael (Scala, Objects Comparison)

The eq Operator

© 2008 Haim Michael (Scala, Objects Comparison)

The eq Operator

© 2008 Haim Michael (Scala, Objects Comparison)

The ne Operator

 Comparing two objects using the ne operator is true if the two

references are different. They refer different objects.

© 2008 Haim Michael (Scala, Objects Comparison)

The ne Operator

object Demo {
 def main(args:Array[String]):Unit = {
 val a = Rectangle(3,4)
 val b = Rectangle(3,4)
 if(a ne b) println("a ne b")
 }
}

case class Rectangle(private var width:Double,private var height:Double)

© 2008 Haim Michael (Scala, Objects Comparison)

The equals Method

 Comparing two objects using the equals method inherited

from Object returns true if the two references refer to the very

same object.

 Overriding this method we should override the hashCode

method as well. Otherwise, we might get into unexpected

behavior when working with collections such as Hashset.

© 2008 Haim Michael (Scala, Objects Comparison)

The equals Method

package com.abelski.samples

import java.io.PrintWriter;
import java.io.File;

object MyScalaDemo extends Application
{
 val obA = new SportiveWeight(8)
 val obB = new SportiveWeight(10)
 val obC = new SportiveWeight(8)
 if(obA.equals(obB))
 {
 println("obA and obB are the same")
 }
 if(obA.equals(obC))
 {
 println("obA and obC are the same")
 }
}

http://www.youtube.com/watch?v=OLjWbYiHATM

© 2008 Haim Michael (Scala, Objects Comparison)

The equals Method

class SportiveWeight(number:Int)
{
 private var weightvalue:Int = if(number>0)number else 10
 def weight_=(Int:Double)
 {
 weightvalue = number
 }
 def weight = weightvalue
 override def equals(ob:Any):Boolean =
 {
 ob match
 {
 case ob:SportiveWeight => this.weight==ob.weight
 case _ => false
 }
 }
 override def hashCode = weightvalue
}

© 2008 Haim Michael (Scala, Objects Comparison)

The equals Method

© 2008 Haim Michael (Scala, Objects Comparison)

Case Classes

 When defining a case class we will get an automatic new

implementation for the equals method. Other methods we

automatically get their implementation include the toString

and hashCode.

© 2008 Haim Michael (Scala, Objects Comparison)

Case Classes

object Demo {
 def main(args:Array[String]):Unit = {

 var ob1 = Rectangle(3,4)
 var ob2 = Rectangle(3,4)
 if(ob1 eq ob2) println("ob1 eq ob2") else println("ob1 is not eq ob2")
 if(ob1==ob2) println("ob1==ob2") else println("ob1 is not == ob2")

 }
}

case class Rectangle(private var width:Double,private var height:Double)

© 2008 Haim Michael (Scala, Objects Comparison)

Comparing Strings

 When comparing two strings using the == operator it is the

same as comparing two different objects from the same class.

Indirectly the equals method is invoked.

 For that reason, comparing strings in Scala is different

comparing with what we know in Java.

© 2008 Haim Michael (Scala, Objects Comparison)

Comparing Strings

object Demo {
 def main(args:Array[String]):Unit = {
 var a:String = "abcefghij".substring(2)
 var b:String = "abcefghij".substring(2)
 if(a==b) println("a==b")
 }
}

© 2008 Haim Michael (Scala, Objects Comparison)

Comparing Value Type Values

 When comparing two value type values using the == operator

it is the same as with comparing any two objects.

 When the two value type values are of different types, before

the comparison takes place new object will created in order to

have a comparison of two objects of the same value type.

© 2008 Haim Michael (Scala, Objects Comparison)

Comparing Value Type Values

object Demo {
 def main(args:Array[String]):Unit = {
 val a:Int = 12
 val b:Double = 12.0
 if(a==b) println("a==b")
 }
}

© 2008 Haim Michael (Scala, Objects Comparison)

The hashCode Function

 When overriding the equals method we must also override

the hashCode method.

 If two objects are equal according to the equals method then

calling the hashCode method on each one of the two objects

should return the same integer value.

 If we avoid this rule then collections as Set and Map will not

work as expected.

© 2008 Haim Michael (Scala, Objects Comparison)

The hashCode Function

class Point(val x:Int, val y:Int) {
 override def hashCode = 12 * (12+x) + y
 override def equals(other:Any):Boolean = {
 other match
 {
 case other: Point => this.x == other.x && this.y == other.y
 case _ => false
 }
 }
}

Make sure the other parameter of the equals
method is of the Any type. Otherwise, it won't
be overriding. It will be overloading.

© 2008 Haim Michael (Scala, Objects Comparison)

The hashCode Function

object Demo {
 def main(args:Array[String]):Unit = {
 val a = new Point(3,4)
 val b = new Point(3,4)
 if(a equals b) println("a equal b")
 }
}

© 2008 Haim Michael (Scala, Objects Comparison)

The hashCode Function

 When defining our class as a case class then both the

hashCode and the equals methods are automatically

defined for us.

© 2008 Haim Michael (Scala, Objects Comparison)

The == Operator

 Comparing two objects using the == operator we will get

indirect invocation for the equals method.

 We can override the equals method and by doing so

influence the way the == operator works.

© 2008 Haim Michael (Scala, Objects Comparison)

The == Operator

class Point(val x:Int, val y:Int) {
 override def hashCode = 12 * (12+x) + y
 override def equals(other:Any):Boolean = {
 other match
 {
 case other: Point => this.x == other.x && this.y == other.y
 case _ => false
 }
 }
}

© 2008 Haim Michael (Scala, Objects Comparison)

The == Operator

object Demo {
 def main(args:Array[String]):Unit = {
 val a = new Point(3,4)
 val b = new Point(3,4)
 if(a==b) println("a==b")
 }
}

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

