Objects Comparisons

© 2008 Haim Michael (Scala, Objects Comparison)

Introduction

% The Scala programming language support for equality is

different comparing with the one we know in Java.

© 2008 Haim Michael (Scala, Objects Comparison)

The eq Operator

*+» Comparing two objects using the eqg operator is true if the two

references are the same. They refer the same object.

© 2008 Haim Michael (Scala, Objects Comparison)

The eq Operator

E EQDemo - Notepad |Z||E|fz|
File Edit Format Yiew Help

object EQDemo
def main(args: Array[String])
var recl:Rectangle = new Rectangle(2,4)

var rec2:Rectangle = new Rectangle(2,4)
if(recl eq rec2) printIn("'BONGA™) else println("NO™)

}
?1ass Rectangle(w:Double,h:Double)
var width:Double = w
var height:Double = h
def toxML =
<rectangle>
<widths {width}</width>
<height> {height}</height>
y </rectangle>

© 2008 Haim Michael (Scala, Objects Comparison)

The eg Operator

e CAWINDOWS\system 3 2\cmd. exe

C:N\scala_demo>scalac EQDemo.scala

C:Nscala_demo>scala EQDemo

C:N\scala_demo>_

© 2008 Haim Michael (Scala, Objects Comparison)

The ne Operator

*+» Comparing two objects using the ne operator is true if the two

references are different. They refer different objects.

© 2008 Haim Michael (Scala, Objects Comparison)

The ne Operator

object Demo {
def main(args:Array[String]) :Unit = {
val a = Rectangle(3,4)
val b = Rectangle(3,4)
if(a ne b) println("a ne b")

case class Rectangle(private var width:Double,private var height:Double)

Run
fLibrary/Java/JavaVirtualMachines/jdk1.8.8_25. jdk/Contents/Home/bin/java ...

’ aneb

Process Tinished with exit code @

© 2008 Haim Michael (Scala, Objects Comparison)

The equals Method

*» Comparing two objects using the equals method inherited

from Object returns true if the two references refer to the very

same object.

» Overriding this method we should override the hashCode
method as well. Otherwise, we might get into unexpected

behavior when working with collections such as Hashset.

© 2008 Haim Michael (Scala, Objects Comparison)

The equals Method

package com.abelski.samples

import java.io.PrintWriter;
import java.io.File;

object MyScalaDemo extends Application
{

val obA = new SportiveWeight (8)

val obB = new SportiveWeight (10)

val obC = new SportiveWeight (8)

1f (obA.equals (obB))

{

println ("obA and obB are the same")

}

1f (obA.equals (obC))

{

println ("obA and obC are the same")

}
}
(111] Tube)

© 2008 Haim Michael (Scala, Objects Comparison)

http://www.youtube.com/watch?v=OLjWbYiHATM

The equals Method

class SportiveWeight (number:Int)
{
private var weightvalue:Int = if (number>0)number else 10
def weight = (Int:Double)
{
weightvalue = number
}
def weight = weightvalue
override def equals (ob:Any) :Boolean =
{
ob match
{
case ob:SportiveWeight => this.weight==o0b.weight
case => false
}
}

override def hashCode = weightvalue

© 2008 Haim Michael (Scala, Objects Comparison)

-

X %[

Eed

The equals Method

MyScalaDemo

€ e [

"C:\Program Files\Java\jdkl.6.0 23\bin\java" -Didea.launc
obA and obC are the same

Process finished with exit code 0

© 2008 Haim Michael (Scala, Objects Comparison)

Case Classes

“* When defining a case class we will get an automatic new

implementation for the equals method. Other methods we
automatically get their implementation include the toString

and hashCode.

© 2008 Haim Michael (Scala, Objects Comparison)

Case Classes

object Demo {
def main(args:Array[String]) :Unit = {

var obl = Rectangle (3,4)

var ob2 = Rectangle(3,4)

if (obl eg ob2) println("obl eqg ob2") else println("obl is not eqg ob2")
if (obl==0b2) println("obl==0b2") else println("obl is not == ob2")

case class Rectangle (private var width:Double,private var height:Double)

Run
> fLibrary/Java/JavaVirtualMachines/jdkl.8.8_25. jdk/Contents/Home/bin/java ...

obl is not eq ob2
obl==0b2

|€‘
LY

Process finished with exit code &

© 2008 Haim Michael (Scala, Objects Comparison)

Comparing Strings

+ When comparing two strings using the == operator it is the
same as comparing two different objects from the same class.

Indirectly the equals method is invoked.

*» For that reason, comparing strings in Scala is different

comparing with what we know in Java.

© 2008 Haim Michael (Scala, Objects Comparison)

Comparing Strings

object Demo ({
def main(args:Array[String]) :Unit = {
var a:String = "abcefghij".substring(2)
var b:String = "abcefghij".substring(2)
if (a==b) println ("a==b")

Run
S /Library/Java/JavaVirtualMachines/jdkl.8.08_25.jdk/Contents/Home/bin/java ...
a==b
— Process Tinished with exit code @
¥

© 2008 Haim Michael (Scala, Objects Comparison)

Comparing Value Type Values

“* When comparing two value type values using the == operator

it is the same as with comparing any two objects.

“* When the two value type values are of different types, before
the comparison takes place new object will created in order to

have a comparison of two objects of the same value type.

© 2008 Haim Michael (Scala, Objects Comparison)

Comparing Value Type Values

object Demo {
def main(args:Array[String]) :Unit = {
val a:Int = 12
val b:Double = 12.0
1f (a==b) println ("a==b")

}
}
Run
» /Library/Java/JavaVirtualMachines/jdk1.8.8_25.jdk/Contents/Home/bin/java ...
a==b
— Process Tinished with exit code @
=

=4

© 2008 Haim Michael (Scala, Objects Comparison)

The hashCode Function

*+ When overriding the equals method we must also override

the hashCode method.

% If two objects are equal according to the equals method then
calling the hashCode method on each one of the two objects

should return the same integer value.

+ If we avoid this rule then collections as Set and Map will not

work as expected.

© 2008 Haim Michael (Scala, Objects Comparison)

The hashCode Function

class Point(val x:Int, val y:Int) {
override def hashCode = 12 * (12+x) + y
override def equals (other:Any) :Boolean = {
other match

{

case other: Point => this.x == other.x && this.y == other.y
case => false

Make sure the other parameter of the equals
method is of the Any type. Otherwise, it won't
be overriding. It will be overloading.

© 2008 Haim Michael (Scala, Objects Comparison)

The hashCode Function

object Demo {
def main (args:Array|[String]) :Unit = {
val a = new Point (3,4)
val b = new Point (3,4)
if(a equals b) printlin("a equal b")

}
}
Run
P 4 /Library/Java/JavaVirtualMachines/jdkl.8.0_25.jdk/Contents/Home/bin/java ...
) a equal b
H 4
— Process finished with exit code @
| =

© 2008 Haim Michael (Scala, Objects Comparison)

The hashCode Function

*+ When defining our class as a case class then both the

hashCode and the equals methods are automatically

defined for us.

© 2008 Haim Michael (Scala, Objects Comparison)

The == Operator

*» Comparing two objects using the == operator we will get

iIndirect invocation for the equals method.

%+ We can override the equals method and by doing so

influence the way the == operator works.

© 2008 Haim Michael (Scala, Objects Comparison)

The == Operator

class Point(val x:Int, wval y:Int) {
override def hashCode = 12 * (12+x) + vy
override def equals (other:Any) :Boolean = {
other match
{
case other: Point => this.x == other.x && this.y == other.y
case => false

© 2008 Haim Michael (Scala, Objects Comparison)

The == Operator

object Demo {

def main(args:Array[String]) :Unit = {
val a = new Point (3,4)
val b = new Point (3, 4)
1if (a==b) println ("a==b")
}
}
Run

b 4+ fLibrary/Java/JavaVirtualMachines/jdkl.8.8_25. jdk/Contents/Home/bin/java ...

a==b

Process finished with exit code @

| =
= ||

© 2008 Haim Michael (Scala, Objects Comparison)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

