
© 2008 Haim Michael 20160118

Collections

© 2008 Haim Michael 20160118

Introduction

 The Scala programming language has a rich library of

collection classes, that allow us to create various collection

types, such as maps, sets, lists, arrays and others.

 Most collection classes exist in three packages,

scala.collection, scala.collection.immutable

and scala.collection.mutable.

© 2008 Haim Michael 20160118

Introduction

 The scala.collection package includes all high level

abstract classes or traits. Most of them have both mutable

and immutable implementations. These implementations

reside in the scala.collection.immutable and

scala.collection.mutable packages.

© 2008 Haim Michael 20160118

The Iterable Trait

 This is the main trait the collections library includes. Types

mixed in with this trait can be iterated.

 This trait represents a collection that can get us an iterator we

can use to iterate the elements.

© 2008 Haim Michael 20160118

The Iterable Trait

 The Iterable trait is the base trait for Seq, Set and Map.

© 2008 Haim Michael 20160118

The Iterable Trait

 We get an iterator by calling the iterator method:

def iterator: Iterator[A]

© 2008 Haim Michael 20160118

The Iterator Trait

 The Iterator trait extends AnyRef. We can get an iterator

through which we will iterate both finite and infinite collections

of elements.

© 2008 Haim Michael 20160118

The Iterator Trait

object IteratorDemo
{

def main(args: Array[String])
{

var ob:List[String] = List("dave","mike","jack")
var iterator:Iterator[String] = ob.iterator
while(iterator.hasNext)
{

println(iterator.next)
}

}
}

© 2008 Haim Michael 20160118

The Iterator Trait

© 2008 Haim Michael 20160118

Sequences

 The Seq trait defines a sequence of ordered elements.

 Classes (e.g. Array, List, Queue, Stack) that extend this

trait describe collections of ordered elements.

© 2008 Haim Michael 20160118

Lists

 List is one of the most commonly used data structure in the

Scala programming language. All elements the List object

holds should be of the same type.

© 2008 Haim Michael 20160118

Lists

 We can easily create new List object by writing the word List

followed by parentheses with the list values inside.
...

val colors = List('yellow','brown','blue','green','black')

val numbers = List(1,20,22,12,82,8,4)

...

© 2008 Haim Michael 20160118

Sets

 The Set trait defines a sequence of unique elements.

 The Scala programming language offers both mutable and

immutable versions of sets.

 By default, the Scala programming language uses the

immutable Set. If we want to use the mutable Set, we should

explicitly import the scala.collection.mutable.Set

class.

© 2008 Haim Michael 20160118

Sets

 When creating a new Set object we can either create an

empty set or pass over the elements to the constructor.

object Demo
{
 def main(args:Array[String]):Unit =
 {
 var set1:Set[Int] = Set()
 var set2:Set[Int] = Set(12,5,2,72,80)
 print(set2)
 }
}

© 2008 Haim Michael 20160118

Maps

 The Map trait defines a sequence of non-ordered unique key-

value elements.

 The keys are unique. The values don't need to be unique.

 The Scala programming language offers both mutable and

immutable versions of maps. By default, Scala uses the

immutable Map. In order to use the mutable Map, we will

need to import the scala.collection.mutable.Map

class explicitly.

© 2008 Haim Michael 20160118

Maps

 When creating a new empty map we should specify the types

of the keys and the values. When creating a non empty map

we can avoid it.

object Demo
{
 def main(args:Array[String]):Unit =
 {
 val map1:Map[Int,String] = Map()
 val map2 = Map(1231->"Dave",4234->"Tom",6343->"Gal")
 print(map2)
 }
}

© 2008 Haim Michael 20160118

Range

 The Range collection represents a range of Int numbers.

Creating a new Range object can be fairly simple. We just

need to specify the range using two Int numbers and using

the to or the until keywords.

© 2008 Haim Michael 20160118

Range

package com.lifemichael.samples

object Demo
{
 def main(args:Array[String]):Unit =
 {
 val a = 1 to 10
 println(a)
 val b = 1 until 10
 println(b)
 }
}

© 2008 Haim Michael 20160118

Tuples

 Tuple in Scala has a fixed number of items. When passing

over a tuple we actually pass over all items together, as a

whole.

 Unlike arrays and lists the tuple can hold objects with different

types. The objects the tuple holds must be immutable.

© 2008 Haim Michael 20160118

Tuples

 The simplest way for creating a new tuple would be putting

the values together in parentheses.

object Demo
{
 def main(args:Array[String]):Unit =
 {
 val numbers = (12,8,32)
 print(numbers)
 }
}

© 2008 Haim Michael 20160118

Options

 The Scala Option[T] is a container for zero or one element

of a given type.

 The Option[T] can be either an object of the type Some[T]

or of the type None. Object of the type None represents a

missing value.

© 2008 Haim Michael 20160118

Options

 The following code shows that we can assign a variable of the

type Option either with a reference for a Some object or with

a reference for None object.

object Demo
{
 def main(args:Array[String]):Unit =
 {
 var temp:Option[Int] = Some(5)
 temp = None
 }
}

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

