
© 2008 Haim Michael 20150117

Closures



© 2008 Haim Michael 20150117

Introduction

 When defining a function, as in the case of defining a lambda

expression, we can refer variables other than the function

parameters. 
...

(x:Int) => x + sum

...

 The other variables must be available within the scope of the

defined function. 



© 2008 Haim Michael 20150117

What is a Closure?

 The closure is an inner function that has access to its outer

function scope. When defining a function, at runtime we get

an object. 

 Each function call is actually an invocation of the object that

represents the function. 

 When we define a function that uses variables from its outer

scope the object we get is a closure. 



© 2008 Haim Michael 20150117

What is a Closure?



© 2008 Haim Michael 20150117

What is a Closure?



© 2008 Haim Michael 20150117

Changes

 Once a closure was created, the closure continues to see

changes in those variables the closure uses from its outer

scope. 

 The closures in Scala capture the variables themselves. They

don't capture their values.



© 2008 Haim Michael 20150117

Changes



© 2008 Haim Michael 20150117

Changes



© 2008 Haim Michael 20150117

Changes

 Changes made by a closure to a captured variable are visible

outside the closure. 



© 2008 Haim Michael 20150117

Changes



© 2008 Haim Michael 20150117

Changes


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11

