
© 2015 Haim Michael 20160122

Classes & Objects

© 2015 Haim Michael 20160122

Class Definition

 The class is kind of a template through which we can create

new objects. We create new objects using the 'new' keyword.

...

class Rectangle

{

...

}

...

new Rectangle

...

© 2015 Haim Michael 20160122

Class Definition

 The fields we define within the class can be defined either

using val or using var. Either way, these variables refer

separately to each one of the objects instantiated from our

class.

 Each value is an object. Including the primitive type values.

Therefore, each field we define within the class becomes a

variable within a specific object.

© 2015 Haim Michael 20160122

Class Definition

 Different objects that hold within that field the same primitive

type value actually hold the same reference for the same

object.

class Point

{

 var x:Int = 0

var y:Int = 0

}

var p1 = new Point

var p2 = new Point

© 2015 Haim Michael 20160122

Class Definition

© 2015 Haim Michael 20160122

Class Definition

 When new values will be assigned to each one of the

coordinates of each one of the two points we will get a new

graph of objects reflecting that.

p1.x = 2

p1.y = 3

p2.x = 7

p2.y = 9

© 2015 Haim Michael 20160122

Class Definition

© 2015 Haim Michael 20160122

Visibility Rules

 The keywords that modify visibility appear at the beginning of

declarations. We will find them before the class or the

trait keywords for types, before the var or val keywords

for fields, and before the def keyword for methods.

 When applying a visibility modifier for constructor we should

place it after the type name and before the argument list.
...

class Student private (name: String) {…}

...

© 2015 Haim Michael 20160122

The private Access Modifier

 We can protect the values the instance variables hold by

defining them with the 'private' access modifier.

class Rectangle

{

 private var width:Double

 private var height:Double

def setWidth(w:Double):Unit =

{

 if(w>0) width = w

}

...

}

© 2015 Haim Michael 20160122

The private Access Modifier

 Unlike Java, if an inner class has a private member the

enclosing class cannot see it.
...

class Human

{

 class Brain

 {

 private var iq:Int;

...

}

}

...

© 2015 Haim Michael 20160122

The private Access Modifier

 We can limit the visibility to the very same instance by writing

private[this]. Another instance of the same class won't

be able to access a member that was defined with the

private[this] access modifier.

© 2015 Haim Michael 20160122

The private Access Modifier

...
package scopeA

{

class Box(private[this] val num: Int)

{

 def equalField(other: Box) = this.num == other.num

}

...

This code doesn't compile!

© 2015 Haim Michael 20160122

The private Access Modifier

 We can limit the visibility to specific type by writing

private[T], where T is the type.

 The accessibility won't be allowed neither from an inner type

or from an outer one.

© 2015 Haim Michael 20160122

The private Access Modifier

...
package scopeA

{

class Box(private[Box] val num: Int)

{

 def equalField(other: Box) = this.num == other.num

class Fly

{

def doSomething = num //ERROR

...

}

}

}

...

© 2015 Haim Michael 20160122

The private Access Modifier

 We can limit the visibility to specific package by writing

private[scope], where scope is the name of the package.

 The accessibility won't be allowed neither from an inner

package, from an outer one or from a none-related one.

© 2015 Haim Michael 20160122

The private Access Modifier

...
package pack1
{

package pack11
{

 private [pack11] class A
}

}
package pack2
{

class C extends pack11.A // ERROR
}
...

© 2015 Haim Michael 20160122

The protected Access Modifier

 Protected members are visible to the defining type, to the

derived types and to the nested ones.

 Protected types are visible only within the same package and

within sub packages.

 Similarly to the private access modifier, we can limit the

protected accessibility to specific package, type and this.

© 2015 Haim Michael 20160122

The public Access Modifier

 This is the default access modifier. When we don't specify a

specific other access modifier this is the one that takes place.

 Public members and types are visible everywhere, across all

boundaries.

© 2015 Haim Michael 20160122

Method Parameters

 The parameters we define in our methods are 'val' by

default.

class Rectangle

{

 private var width:Double

 private var height:Double

def setWidth(w:Double):Unit =

{

 if(w>0) width = w

}

...

}

© 2015 Haim Michael 20160122

Shorter Syntax

 When a method spans over one statement only we can take

out the curly brackets.

class Rectangle

{

 private var width:Double

 private var height:Double

def setWidth(w:Double):Unit = if(w>0) width = w

def setHeight(h:Double):Unit = if(h>0) height = h

 def getWidth():Double = width

def getHeight():Double = height

}

© 2015 Haim Michael 20160122

The Semicolon Inference

 When the statement spans over one line only it isn't

necessary to end it with a semicolon (';').

 When writing multiple statement in the same line we must

place a semicolon between each one of them.
val str = 'abc'; println(str);

© 2015 Haim Michael 20160122

Static Members

 Classes cannot have static members. We cannot define static

fields and we cannot define static methods.

© 2015 Haim Michael 20160122

The this Keyword

 The this keyword refers to the object instance on which the

currently executing method was invoked.
...

def area(): Double =

{

 Math.Pi*this.radius*this.radius

}

...

© 2015 Haim Michael 20160122

Defining Constructors

 Defining the class primary constructor is done together with

the class declaration at the same line of code. The compiler

takes the parameters we specify in the class declaration (also

known as the class parameters) and creates a primary

constructor.

class Circle(rad:Double)

{

 ...

}

© 2015 Haim Michael 20160122

Defining Constructors

 The class parameters can be used directly in the body of the

class. This helps us writing shorter code.

© 2015 Haim Michael 20160122

Defining Constructors

© 2015 Haim Michael 20160122

Defining Constructors

© 2015 Haim Michael 20160122

Defining Constructors

 The Scala compiler will compile any code we place within the

class body and which isn't part of a field or a method definition

into the scope of the primary constructor.

class Circle(rad:Double)

{

print (“new circle has just been constructed...”)

 private var radius:Double = if(rad>0) rad else 0

 def area(): Double = Math.Pi*radius*radius

}

© 2015 Haim Michael 20160122

Defining Constructors

© 2015 Haim Michael 20160122

Defining Constructors

© 2015 Haim Michael 20160122

Defining Constructors

 Using this we can define more than one constructor.

 Using this we can call a specific constructor from within

another one. That call should be the first statement.

class Circle(rad:Double)

{

 private var radius:Double = if(rad>0) rad else 0

 def this() = this(10)

 def area(): Double = Math.Pi*radius*radius

}

© 2015 Haim Michael 20160122

Defining Constructors

© 2015 Haim Michael 20160122

Defining Constructors

© 2015 Haim Michael 20160122

Singleton Objects

 When defining a singleton object, instead of using class we

use object.

 If we define a class with the same name in the same source

file, the defined class is called the companion class of the

singleton object. In this case, the singleton object and the

companion class can access each other private members.

© 2015 Haim Michael 20160122

Singleton Objects

 We can use a companion class for developing a factory, as in

the following code sample.

package com.lifemichael.samples

class Something(foo: String)

object Something {
 def apply(foo: String) = new Something(foo)
}

object Demo {

 def main(args:Array[String]):Unit = {
 var ob = Something("gaga")
 println("hello!")
 }
}

© 2015 Haim Michael 20160122

Singleton Objects

 A Singleton object can extend a super class and it can mix in

traits.

 The main difference between singleton objects and classes is

that we cannot instantiate a singleton object using the 'new'

keyword.

 When defining a singleton object without sharing the name

with a companion class the object is known as a standalone

object.

© 2015 Haim Michael 20160122

Singleton Objects

© 2015 Haim Michael 20160122

Singleton Objects

© 2015 Haim Michael 20160122

Standalone Application

 In order to develop a stand alone application we should define

a singleton object with the method main. The main method

should be defined with one parameter of type Array[String]. In

addition, its returned value should be of type Unit. The main

method is the application entry point.

© 2015 Haim Michael 20160122

Standalone Application

© 2015 Haim Michael 20160122

The fsc Compiler

 Using the 'fsc' compiler (instead of 'scalac') can

dramatically shortcut the development time.

 The first time we call 'fsc' a small local server daemon

attached to a port on our computer will start running.

 The second time we call 'fsc' the small local server daemon

will be already up and running. Passing over the names of the

files we want to compile the compilation will be dramatically

faster.

© 2015 Haim Michael 20160122

The fsc Compiler

 Calling 'fsc -shutdown' will shut down the small daemon

server.

© 2015 Haim Michael 20160122

The java.lang.Object Class

 All classes extend java.lang.Object. We can call each

one of the methods defined in java.lang.Object on every

object of every type.

© 2015 Haim Michael 20160122

Overriding Methods

 When overriding a method we should use the override

modifier.

 The following code sample shows how to override the

toString() method.

© 2015 Haim Michael 20160122

Overriding Methods

© 2015 Haim Michael 20160122

Overriding Methods

© 2015 Haim Michael 20160122

The require Function

 Using this function we can specify a requirement for

arguments passed over to the function.

 We can use it in order to enforce a precondition on the caller

of the function. If the condition is not met then an

IllegalArgumentException will be thrown.

© 2015 Haim Michael 20160122

The require Function

© 2015 Haim Michael 20160122

The require Function

© 2015 Haim Michael 20160122

Method Overloading

 Scala supports methods overloading. We can define the same

method in several different version. Each version should differ

either in the number of parameters or their types.

© 2015 Haim Michael 20160122

Anonymous Inner Class

 The Scala programming language allows us to define

anonymous inner classes.

 The syntax is very similar to the syntax we all know in Java.

© 2015 Haim Michael 20160122

Anonymous Inner Class

object HelloSample
{
 def main(args:Array[String]):Unit =
 {
 val ob = new MyStack[Int](0)
 {
 def data:Nothing = throw new Exception("empty stack");
 }
 }
}

abstract class MyStack[T](size:Int)
{
 def data:T;
}

http://www.youtube.com/watch?v=hA-RHF3hrIo

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52

