
© 2008 Haim Michael (Scala Fundamentals, Traits)

Assertions

© 2008 Haim Michael (Scala Fundamentals, Traits)

Introduction

 The assertion mechanism supported by Scala is very similar

to the one we all know in Java.

 The Predef object includes the definition for assert,

assume and require. The three methods are very similar.

The three methods exist so we could use each and every one

of them in the right context. Technically they work the same.

© 2008 Haim Michael (Scala Fundamentals, Traits)

Introduction

 We will use the require method for testing a precondition.

We will use this method to check a pre-condition the caller

should have verified before calling our method.

 We will use the assume method for testing a static condition

we expect to fulfill during the execution of our code.

 We will use the assert method for testing a condition we

expect to be true following the execution of code we wrote.

© 2008 Haim Michael (Scala Fundamentals, Traits)

The assert Method

 The assertions in Scala written as calls to the predefined

method assert.

...

assert(condition)

...

 If the condition is false an AssertionError is thrown.

© 2008 Haim Michael (Scala Fundamentals, Traits)

The assert Method

 Calling the assert method we can also pass over a textual

explanation. That textual explanation will be passed over to

the new AssertionError created object.

...

assert(condition,”explanation...”)

...

© 2008 Haim Michael (Scala Fundamentals, Traits)

The assert Method

object AssertionDemo
{

def main(args: Array[String])
{

var obA = new Rectangle(4,3)
println(obA.area)
var obB = new Rectangle
println(obB.area)

}
}

class Rectangle(var width:Double,var height:Double)
{
 require(width>0 && height>0)
 def this() = this(0,0)
 def area(): Double =
 {
 assume(width>0 && height>0,

"width and height must be positive")
 val result:Double = width * height
 assert(result>0)
 result
 }
}

© 2008 Haim Michael (Scala Fundamentals, Traits)

The assert Method

© 2008 Haim Michael (Scala Fundamentals, Traits)

The @elidable Annotation

 As of Scala 2.8 we can use the @elidable annotation in

order to mark methods we want to be able to remove their

execution in compile time.

 The assert, assume and require methods were marked with

this annotation.

 When marking a method with the @elidable annotation we

should specify a number. That number would be the priority

we assign the marked method.

© 2008 Haim Michael (Scala Fundamentals, Traits)

The @elidable Annotation

 The assert, require and assume methods were marked with

the @elidable together with the

scala.annotation.elidable.ASSERTION number.

Checking the source code of

scala.annotation.elidable we will find that the value of

this constant is 2000.

© 2008 Haim Michael (Scala Fundamentals, Traits)

The @elidable Annotation

 In order to exclude the use of the require, assume and

assert methods marked with the @elidable annotation

from the compilation we should pass over the -Xelide-

below argument to the scalac compiler. We should do so

together with numeric value bigger than 2000. This way our

use of require, assume and assert will be excluded from

the compilation.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10

