
© 2008 Haim Michael 20151020

Functions

© 2008 Haim Michael 20151020

Introduction

 Each function is a collection of statements that can be

executed more than once in a program.

 Functions can receive arguments and they can calculate

and return a value back to the caller.

© 2008 Haim Michael 20151020

The def Statement

 We create a function by calling the def statement. Each

function we create is assigned with a name. We can later

use that name in order to call it.

def function_name (param1, param2, param3,... paramN):

statements

© 2008 Haim Michael 20151020

The def Statement

 The execution of 'def' takes place in run-time. Only then the

object function is created.

 The definition of our function is a statement. We can place a

function definition wherever we can place a statement.

© 2008 Haim Michael 20151020

The def Statement

def sum(a,b):
 total = a + b
 return total

print(sum(4,3))

© 2008 Haim Michael 20151020

The def Statement

 We can place different definitions for the same function and

using a simple if statement choosing which of those

versions will be defined.

...

if test:

def func():

 ...

else:

def func():

 ...

...

http://www.youtube.com/watch?v=BVCMUkYEHC0

© 2008 Haim Michael 20151020

The def Statement

 Each function is just an object. The name assigned to each

function is just a name. We use that name in order to call

the function.

© 2008 Haim Michael 20151020

Function Attributes

 Because a function is an object we can add new attributes

we choose.

def sum(a,b):
 c = a + b
 return c

sum.version = 101
sum.author = "haim michael"
sum.priority = 3
print(sum.author)

http://youtu.be/4QsTmcNKip4

© 2008 Haim Michael 20151020

Variables Scope

 The place where we assign a name with a value in our code

determines its scope.

 Names we assign within the scope of a function are

considered as local variables. When the function ends they

disappear.

 Names we assign within the scope of an enclosing def are

considered as non local to the nested function.

 Names we assign outside of all functions are globals.

© 2008 Haim Michael 20151020

The Local Scope

 Each time a function is called a new local scope is created.

We can think of using 'def' as of creating a new local

scope. Each function call creates a new local scope. This

behavior allows us to code recursive functions.

© 2008 Haim Michael 20151020

The nonlocal Keyword

 Adding the nonlocal keyword will turn the variable into a

local variable that belongs to the enclosing scope.

def a():
 temp = 2
 def b():
 nonlocal temp
 temp = 4
 print("temp inside b ",temp)
 b()
 print("temp inside a ",temp)
a()

http://www.youtube.com/watch?v=iurtFwZAl68

© 2008 Haim Michael 20151020

The nonlocal Keyword

© 2008 Haim Michael 20151020

The nonlocal Statement

def doSomethingA():
 number = 7
 def doSomethingB():
 nonlocal number;
 number = 9;
 doSomethingB()
 print(number)

doSomethingA()

© 2008 Haim Michael 20151020

The Global Scope

 Each module is considered as a global scope. Each module

has its own namespace.

 Variables we create within a given module become

attributes of the module object itself.

 The global scope spans over one single file only. Variables

created in one file aren't accessible from other files.

© 2008 Haim Michael 20151020

The Global Scope

 If we want to use variables created in a specific module (file)

 outside of it we must import that module (file).

© 2008 Haim Michael 20151020

The Global Scope

import other
sum = other.temp + 2
print(sum)

temp = 12

demo.py

other.py

© 2008 Haim Michael 20151020

The Global Scope

 Defining a variable within a function together with the

'global' keyword will turn it into a global variable.

 The variable will become a global variable for the top level

enclosing module.

© 2008 Haim Michael 20151020

The Global Scope

def doSomething():
 global temp
 temp = 12
doSomething()
sum = 4
sum = sum + temp
print(sum)

http://youtu.be/lQydA8kh2wU

© 2008 Haim Michael 20151020

The Global Scope

© 2008 Haim Michael 20151020

The LEGB Rule

 When referring a name in our code the search is carried on

through the following four scopes: local, enclosing,

global and built-in.

 LEGB stands for Local, Enclosing, Global and Built-in.

http://youtu.be/iwzn2CqeoL4

© 2008 Haim Michael 20151020

The LEGB Rule

© 2008 Haim Michael 20151020

Accessing Globals

 Using the global keyword we can specify a specific

variable we want to be treated as if it is a global variable.

© 2008 Haim Michael 20151020

Accessing Globals

number = 10

def doSomethingA():
 number = 12

def doSomethingB():
 global number
 number = 14

doSomethingA()
print("A: ",number)

doSomethingB()
print("B: ",number)

© 2008 Haim Michael 20151020

Nested Functions

 Defining functions we can get them one within the other.

 Referencing a variable ('x') from within a given current

scope (function) first searches for a lexically enclosing

function. From inner to outer till reaching the current global

scope (the module file).

© 2008 Haim Michael 20151020

Nested Functions

 If the variable (x) is referenced as a nonlocal variable

within our function the assignment will change the variable

(x) in the closest enclosing function's local scope.

http://youtu.be/ARiKzI7PnaI

© 2008 Haim Michael 20151020

Nested Functions

© 2008 Haim Michael 20151020

Returned Functions

 We can define a function that its returned value is another

function.

 When one function returns a function it includes its

definition.

 The returned function is capable of referring variables that

belong to the scope of the outer one.

© 2008 Haim Michael 20151020

Returned Functions

def doSomethingA():
 number = 7
 def doSomethingB():
 print(number)
 return doSomethingB

ob = doSomethingA()

ob()

© 2008 Haim Michael 20151020

Returned Functions

© 2008 Haim Michael 20151020

Arguments

 When calling a function passing over names, we actually

pass the references held by these names.

 Assigning new references to the parameter names within

the function scope doesn't effect the names the caller

passed.

 Changing a mutable object from within the function the

caller code should feel that as well.

© 2008 Haim Michael 20151020

Sequence Returned Value

 We can define a function that returns a tuple, or any other

sequence type.

#dmo

def f(a,b):
 numA = 2 * a
 numB = 2 * b
 return [numA,numB]

x = f(3,5)

print(x)

© 2008 Haim Michael 20151020

The func(name) Syntax

 By default, the arguments we pass must match by position,

left to right, and we must pass exactly as many arguments

as required.

def f(a,b):
 sum = a+b
 print(sum)

f(2,3)

© 2008 Haim Michael 20151020

The func(name=value) Syntax

 Calling a function we can specify which parameters should

receive a value by using the argument's name in the

name=value syntax.

#dmo

def f(a,b):
 numA = 2 * a
 numB = 2 * b
 return [numA,numB]

x = f(a=3,b=5)

print(x)

© 2008 Haim Michael 20151020

The func(*name) Syntax

 Adding * to the sequence we pass over to the function, the

function will be capable of unpacking the passed argument

into discrete separated parameters.

def f(x1,y1,x2,y2):
 return (y2-y1)*(y2-y1)+(x2-x1)*(x2-x1)

ob = [0,0,4,3]
num = f(*ob)
print(num)

© 2008 Haim Michael 20151020

The func(**name) Function

 Adding ** to the argument name, when calling the function a

collection of key/value pairs in the form of a dictionary will

be expected to be passed over to the function as individual

keyword arguments.

def f(a,b):
 print(a)
 print(b)

ob = {'a':1,'b':2}
f(**ob)

© 2008 Haim Michael 20151020

The func(**name) Function

 When defining a function we must specify the parameters

in the following order. The first should be the normal

parameters. After these parameters we should specify the

default parameters followed by the *name parameters and

followed by the **name ones.

© 2008 Haim Michael 20151020

The def func(name) Syntax

 Defining a simple function, the passed values should match

by position or name.

def f(a,b):
 sum = a+b
 print(sum)

f(2,3)

© 2008 Haim Michael 20151020

The def func(name=value) Syntax

 Defining a function we can use the argument's name in the

name=value syntax in order to specify default values for

specific arguments.

def f(a=4,b=6):
 numA = 2 * a
 numB = 2 * b
 return [numA,numB]

x = f()

print(x)

© 2008 Haim Michael 20151020

The def func(name=value) Syntax

 This code sample includes a function with two parameters.

The first is a normal positioned one. The second has a

default value.

def f(a,b=6):
 numA = 2 * a
 numB = 2 * b
 return [numA,numB]

x = f(5)

print(x)

© 2008 Haim Michael 20151020

The def func(*name) Syntax

 Adding * to the parameter name in the function definition

collects unmatched positional arguments into a tuple.

#dmo

def sum(*tpl):
 sum = 0
 for num in tpl:
 sum = sum + num
 return sum

print(sum(3,4,6,2,3,6))

© 2008 Haim Michael 20151020

The def func(*name) Syntax

 It is common to name the parameter in these cases with

args. This way it is clear that the function can get any

number of arguments. They will be all packed in one itrable

object.

def sum(*args):
 sum = 0
 for num in tpl:
 sum = sum + num
 return sum

print(sum(3,4,6,2,3,6))

© 2008 Haim Michael 20151020

The def func(**name) Syntax

 Adding ** to the parameter name in the function definition

collects unmatched positional arguments into a dictionary.

def f(**args):
 print(args)

f(a=10,b=20)

© 2008 Haim Michael 20151020

The def func(**name) Syntax

 Adding ** to the parameter name in the function definition

collects unmatched positional arguments into a dictionary.

© 2008 Haim Michael 20151020

Indirect Function Call

 When assigning a function to one of our variables we can

append () to that variable and use it in order to call that

function.

def factorial(a):
 if a==0:
 return 1
 else:
 return a * factorial(a-1)

f = factorial
print(f(5))

http://www.youtube.com/watch?v=O2gfXUtrjS8

© 2008 Haim Michael 20151020

Functions Are Objects

 Because the functions are objects we can process a

function as any other object.

>>> dir(factorial)
['__annotations__', '__call__', '__class__', '__closure__',
'__code__', '__defaults__', '__delattr__', '__dict__',
'__doc__', '__eq__', '__format__', '__ge__', '__get__',
'__getattribute__', '__globals__', '__gt__', '__hash__',
'__init__', '__kwdefaults__', '__le__', '__lt__',
'__module__', '__name__', '__ne__', '__new__', '__reduce__',
'__reduce_ex__', '__repr__', '__setattr__', '__sizeof__',
'__str__', '__subclasshook__']
>>>

© 2008 Haim Michael 20151020

Function Annotations

 When we define a function we can optionally specify the

types of its parameters and the type of the returned value.
def f(country: str, food: str = 'eggs') -> int:

 print("something")

 The function annotations hold metadata information about

the function, and specifically about the types of its

parameters and the type of the returned value.

© 2008 Haim Michael 20151020

Function Annotations

 We can access the function annotations by referring the

__annotations__ attribute each function has.

 The function annotations hold optional meta data that

doesn't effect the way the function is executed.

© 2008 Haim Michael 20151020

Function Annotations

© 2008 Haim Michael 20151020

Anonymous Functions (Lambda)

 Using the lambda keyword we can define an anonymous

function.

lambda param1, param2, param3...paramN : expression

 Unlike using def, when using lambda we get an

expression. Not a statement.

© 2008 Haim Michael 20151020

Anonymous Functions (Lambda)

ob = lambda a,b,c:a+b+c
print(ob(1,2,3))

https://www.youtube.com/watch?v=72CzyXkkd-g

© 2008 Haim Michael 20151020

Anonymous Functions (Lambda)

 Unlike using def, when using lambda we can have one

single expression. We cannot have a block of statements.

© 2008 Haim Michael 20151020

The zip() Function

 Using the zip function we can zip together the elements

coming from two different iterable objects and get a new

iterable object that holds tuples that include those elements.

ids = [123, 234, 345]
names = ["mosh", "gonen", "ran"]
data = zip(ids, names)
for ob in data:
 print(ob)

© 2008 Haim Michael 20151020

The zip() Function

© 2008 Haim Michael 20151020

The main() Function

 When the Python runtime environment reads our source file,

it executes the code it finds there.

 When the Python runtime is running a module (the source

file) as the main program, it sets the special __name__

variable to be with the value "__main__".

 When a file is being imported from another module,

__name__ will be set to the module's name.

© 2008 Haim Michael 20151020

The main() Function

def main():
 print("hello python!")

if __name__=="__main__":
 main()

print("yalla")

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55

