
10/08/14 © 2008 Haim Michael. All Rights Reserved. 1

Web Forms

10/08/14 © 2008 Haim Michael. All Rights Reserved. 2

Introduction

 Once an HTTP request arrives, the server decodes the data.

 If the request is for a PHP script, the server passes it on to the

PHP engine.

 When the server sends back its reply, it first writes a set of

response headers.

 The response headers include important information for the

client (e.g. content type being returned etc.).

10/08/14 © 2008 Haim Michael. All Rights Reserved. 3

HTML Forms

 In most cases, the PHP script will interact with the end users

clients using one of the two HTTP methods: GET & POST.

 The primary different between GET & POST, is the way

through which the additional data is sent by the client.
When using GET the additional data is sent as a query string, and therefore its

amount is limiedt. When using POST the additional data is sent as part of the

request, and for that reason its amount is not limited.

10/08/14 © 2008 Haim Michael. All Rights Reserved. 4

HTML Forms

<FORM ACTION=account.php METHOD=GET>

Name: <INPUT TYPE=text name='name'>

ID: <INPUT TYPE=text name='id'>

<INPUT TYPE=SUBMIT>

</FORM>

10/08/14 © 2008 Haim Michael. All Rights Reserved. 5

HTML Forms

 When a form is submitted using GET, its values are encoded

in the query string portion of the URL.
http://www.zindell.com/page.php?list=username&id=1212

 When a form is submitted using POST, its values are part of

the request.

http://www.zindell.com/page.php?list=username&id=1212
http://www.zindell.com/page.php?list=username&id=1212

10/08/14 © 2008 Haim Michael. All Rights Reserved. 6

The $_GET Super Global Array

 Each argument sent with the request (using GET method) is

accessible through the $_GET super global array.

 The key for each argument is the name of that argument.

10/08/14 © 2008 Haim Michael. All Rights Reserved. 7

The $_GET Super Global Array

<FORM ACTION=rectangle.php METHOD=GET>

Width <INPUT TYPE=TEXT NAME=width>

Height <INPUT TYPE=TEXT NAME=height>

<INPUT TYPE=SUBMIT>

</FORM>

http://www.abelski.com/courses/php/samples/webform/rectangle_form.html

10/08/14 © 2008 Haim Michael. All Rights Reserved. 8

The $_GET Super Global Array

<?PHP

echo $_GET['width'];

echo "
";

echo $_GET['height'];

?>

10/08/14 © 2008 Haim Michael. All Rights Reserved. 9

The $_GET Super Global Array

 Sending the PHP script parameters that include the array

notation (brackets signs within their name) will create arrays.
http://jacado.com/smpl.php?id=12&book[author]=haim&book[title]=java

We can now write a PHP script that access these variables the following way:

echo $_GET['book']['author'];

echo $_GET['book']['title'];

http://jacado.com/smpl.php?id=12&book[author]=haim&book[title]=java
http://jacado.com/smpl.php?id=12&book[author]=haim&book[title]=java

10/08/14 © 2008 Haim Michael. All Rights Reserved. 10

The urlencode() Function

 When sending data via the query string there are specific

characters we must exclude.

 Calling the urlencode() function takes away all problematic

characters, replacing them with substitutes.
string urlencode (string $str)

This function encodes a given string and makes it feasible to include it within a query string

as part of a URL address.

10/08/14 © 2008 Haim Michael. All Rights Reserved. 11

The $_POST Super Global Array

 Each argument sent with the request (using POST method) is

accessible through the $_POST super global array.

 The key for each argument is the name of that argument.

 As with GET, when using POST we can again use the array

notation.

10/08/14 © 2008 Haim Michael. All Rights Reserved. 12

The $_REQUEST Super Global Array

 When there is a need to write a script that works both with

GET and POST, we can use the $_REQUEST super global

array.

10/08/14 © 2008 Haim Michael. All Rights Reserved. 13

Uploading Files

 Uploading files can be done through a “multi-part” HTTP POST

transaction.
<FORM ENCTYPE=”multipart/form-data” ACTION=”uploader.php” METHOD=”post”>

<INPUT TYPE=”hidden” NAME=”MAX_FILE_SIZE” value=”1000”/>

<INPUT TYPE=”file” NAME=”file_data”/>

<INPUT TYPE=”submit” VALUE=”send file”/>

</FORM>

 Once the file upload completed, the file is stored in a

temporary location. It is our PHP script responsibility to copy it

to another location.

10/08/14 © 2008 Haim Michael. All Rights Reserved. 14

The $_FILES Super Global Array

 Each element of this array includes a key which is the name of

the HTML element that uploaded a file.

 Each element of this array includes a value which is an array

with the following elements:

name The original file name

type The MIME type

size The file size

tmp_name The name of the file's temporary location

error The error code

10/08/14 © 2008 Haim Michael. All Rights Reserved. 15

Uploading File Demo

 The following demo shows how a file is uploaded on the server

and how the PHP script saves it with a new name.
You can download the files from the samples folder and you can find a short video

clip that shows how does it work.

http://www.youtube.com/watch?v=IP_zN56LVuk

10/08/14 © 2008 Haim Michael. All Rights Reserved. 16

Uploading File Demo

10/08/14 © 2008 Haim Michael. All Rights Reserved. 17

Uploading File Demo

10/08/14 © 2008 Haim Michael. All Rights Reserved. 18

Input Validation

 In order to cope successfully with hacker who try to harm our

web application we better validate the data our PHP script

receives.

 We cannot count on client side validation using Java Script.

Hackers can easily remove it. Client side validation using

JavaScript contributes to our web application usability. It

doesn't contribute to its security.

10/08/14 © 2008 Haim Michael. All Rights Reserved. 19

Input Validation

 It is a common practice to define variables we can easily

identify as variables that hold validated clean values. Including

the word 'clean' or a similar one in the name of each and every

clean variable will differentiate them from all others.

$email_address = $_GET['email'];

//validating email address

$email_address_clean = ...

10/08/14 © 2008 Haim Michael. All Rights Reserved. 20

Input Validation

 The function filter_var that exists in PHP as of version 5.2

provides us with the simplest way to validate our input.

10/08/14 © 2008 Haim Michael. All Rights Reserved. 21

Input Validation

<?php
$email_address_dirty = "haim.michael@gmail.com";
if(filter_var($email_address_dirty,FILTER_VALIDATE_EMAIL))
{
 $email_address_clean = $email_address_dirty;
}
echo $email_address_clean;
?>

http://youtu.be/FnCCqyrvuKc

10/08/14 © 2008 Haim Michael. All Rights Reserved. 22

Input Validation

10/08/14 © 2008 Haim Michael. All Rights Reserved. 23

The password_hash Function

 This function receives the password that needs to be hashed

and returns its hash value.

 The first argument is the password we need to hash. The

second argument is an integer value that represents the

specific algorithm we want to use.

10/08/14 © 2008 Haim Michael. All Rights Reserved. 24

The password_hash Function

<?php
$str = "haimmichael";
echo password_hash($str, PASSWORD_DEFAULT)."\n";
?>

http://youtu.be/-uikayG3RzE

10/08/14 © 2008 Haim Michael. All Rights Reserved. 25

The password_hash Function

The Output

10/08/14 © 2008 Haim Michael. All Rights Reserved. 26

The hash Function

 This function calculates the hash value for the data we have.

Unlike the password_hash function, using the hash function

we have more algorithms to choose from. PHP 5.6 adds the

support for the gost-crypto algorithm.

10/08/14 © 2008 Haim Michael. All Rights Reserved. 27

The hash Function

<?php
$vec = hash_algos();
var_dump($vec);

$password = "abcjojo123";
echo "\n".hash("gost-crypto",$password);
echo "\n".hash("gost-crypto",$password);
?>

https://www.youtube.com/watch?v=b2aQVarIT9I&list=PL6B5A743B305A1217

10/08/14 © 2008 Haim Michael. All Rights Reserved. 28

The hash Function

10/08/14 © 2008 Haim Michael. All Rights Reserved. 29

The hash Function

© 2008 Haim Michael. All Rights Reserved. 10/08/14

© 2008 Haim Michael. All Rights Reserved. 1

10/08/14 © 2008 Haim Michael. All Rights Reserved. 1

Web Forms

© 2008 Haim Michael. All Rights Reserved. 10/08/14

© 2008 Haim Michael. All Rights Reserved. 2

10/08/14 © 2008 Haim Michael. All Rights Reserved. 2

Introduction

 Once an HTTP request arrives, the server decodes the data.

 If the request is for a PHP script, the server passes it on to the

PHP engine.

 When the server sends back its reply, it first writes a set of

response headers.

 The response headers include important information for the

client (e.g. content type being returned etc.).

© 2008 Haim Michael. All Rights Reserved. 10/08/14

© 2008 Haim Michael. All Rights Reserved. 3

10/08/14 © 2008 Haim Michael. All Rights Reserved. 3

HTML Forms

 In most cases, the PHP script will interact with the end users

clients using one of the two HTTP methods: GET & POST.

 The primary different between GET & POST, is the way

through which the additional data is sent by the client.
When using GET the additional data is sent as a query string, and therefore its

amount is limiedt. When using POST the additional data is sent as part of the

request, and for that reason its amount is not limited.

© 2008 Haim Michael. All Rights Reserved. 10/08/14

© 2008 Haim Michael. All Rights Reserved. 4

10/08/14 © 2008 Haim Michael. All Rights Reserved. 4

HTML Forms

<FORM ACTION=account.php METHOD=GET>

Name: <INPUT TYPE=text name='name'>

ID: <INPUT TYPE=text name='id'>

<INPUT TYPE=SUBMIT>

</FORM>

© 2008 Haim Michael. All Rights Reserved. 10/08/14

© 2008 Haim Michael. All Rights Reserved. 5

10/08/14 © 2008 Haim Michael. All Rights Reserved. 5

HTML Forms

 When a form is submitted using GET, its values are encoded

in the query string portion of the URL.
http://www.zindell.com/page.php?list=username&id=1212

 When a form is submitted using POST, its values are part of

the request.

© 2008 Haim Michael. All Rights Reserved. 10/08/14

© 2008 Haim Michael. All Rights Reserved. 6

10/08/14 © 2008 Haim Michael. All Rights Reserved. 6

The $_GET Super Global Array

 Each argument sent with the request (using GET method) is

accessible through the $_GET super global array.

 The key for each argument is the name of that argument.

© 2008 Haim Michael. All Rights Reserved. 10/08/14

© 2008 Haim Michael. All Rights Reserved. 7

10/08/14 © 2008 Haim Michael. All Rights Reserved. 7

The $_GET Super Global Array

<FORM ACTION=rectangle.php METHOD=GET>

Width <INPUT TYPE=TEXT NAME=width>

Height <INPUT TYPE=TEXT NAME=height>

<INPUT TYPE=SUBMIT>

</FORM>

 You can find these two sample files in the samples folder of this
topic:

rectangle_form.html
rectangle.php

You can execute this sample browsing at
http://www.abelski.com/courses/php/samples/webform/rectangle_form.html

© 2008 Haim Michael. All Rights Reserved. 10/08/14

© 2008 Haim Michael. All Rights Reserved. 8

10/08/14 © 2008 Haim Michael. All Rights Reserved. 8

The $_GET Super Global Array

<?PHP

echo $_GET['width'];

echo "
";

echo $_GET['height'];

?>

© 2008 Haim Michael. All Rights Reserved. 10/08/14

© 2008 Haim Michael. All Rights Reserved. 9

10/08/14 © 2008 Haim Michael. All Rights Reserved. 9

The $_GET Super Global Array

 Sending the PHP script parameters that include the array

notation (brackets signs within their name) will create arrays.
http://jacado.com/smpl.php?id=12&book[author]=haim&book[title]=java

We can now write a PHP script that access these variables the following way:

echo $_GET['book']['author'];

echo $_GET['book']['title'];

© 2008 Haim Michael. All Rights Reserved. 10/08/14

© 2008 Haim Michael. All Rights Reserved. 10

10/08/14 © 2008 Haim Michael. All Rights Reserved. 10

The urlencode() Function

 When sending data via the query string there are specific

characters we must exclude.

 Calling the urlencode() function takes away all problematic

characters, replacing them with substitutes.
string urlencode (string $str)

This function encodes a given string and makes it feasible to include it within a query string

as part of a URL address.

© 2008 Haim Michael. All Rights Reserved. 10/08/14

© 2008 Haim Michael. All Rights Reserved. 11

10/08/14 © 2008 Haim Michael. All Rights Reserved. 11

The $_POST Super Global Array

 Each argument sent with the request (using POST method) is

accessible through the $_POST super global array.

 The key for each argument is the name of that argument.

 As with GET, when using POST we can again use the array

notation.

© 2008 Haim Michael. All Rights Reserved. 10/08/14

© 2008 Haim Michael. All Rights Reserved. 12

10/08/14 © 2008 Haim Michael. All Rights Reserved. 12

The $_REQUEST Super Global Array

 When there is a need to write a script that works both with

GET and POST, we can use the $_REQUEST super global

array.

 Using the $_REQUEST super global array has a potentially
major security issue. This will be covered in the security topic.

© 2008 Haim Michael. All Rights Reserved. 10/08/14

© 2008 Haim Michael. All Rights Reserved. 13

10/08/14 © 2008 Haim Michael. All Rights Reserved. 13

Uploading Files

 Uploading files can be done through a “multi-part” HTTP POST

transaction.
<FORM ENCTYPE=”multipart/form-data” ACTION=”uploader.php” METHOD=”post”>

<INPUT TYPE=”hidden” NAME=”MAX_FILE_SIZE” value=”1000”/>

<INPUT TYPE=”file” NAME=”file_data”/>

<INPUT TYPE=”submit” VALUE=”send file”/>

</FORM>

 Once the file upload completed, the file is stored in a

temporary location. It is our PHP script responsibility to copy it

to another location.

 The temporary file is automatically destroyed when the script ends.

© 2008 Haim Michael. All Rights Reserved. 10/08/14

© 2008 Haim Michael. All Rights Reserved. 14

10/08/14 © 2008 Haim Michael. All Rights Reserved. 14

The $_FILES Super Global Array

 Each element of this array includes a key which is the name of

the HTML element that uploaded a file.

 Each element of this array includes a value which is an array

with the following elements:
name The original file name

type The MIME type

size The file size

tmp_name The name of the file's temporary location

error The error code

© 2008 Haim Michael. All Rights Reserved. 10/08/14

© 2008 Haim Michael. All Rights Reserved. 15

10/08/14 © 2008 Haim Michael. All Rights Reserved. 15

Uploading File Demo

 The following demo shows how a file is uploaded on the server

and how the PHP script saves it with a new name.
You can download the files from the samples folder and you can find a short video

clip that shows how does it work.

 The temporary file is automatically destroyed when the script ends.

© 2008 Haim Michael. All Rights Reserved. 10/08/14

© 2008 Haim Michael. All Rights Reserved. 16

10/08/14 © 2008 Haim Michael. All Rights Reserved. 16

Uploading File Demo

 The temporary file is automatically destroyed when the script ends.

© 2008 Haim Michael. All Rights Reserved. 10/08/14

© 2008 Haim Michael. All Rights Reserved. 17

10/08/14 © 2008 Haim Michael. All Rights Reserved. 17

Uploading File Demo

 The temporary file is automatically destroyed when the script ends.

© 2008 Haim Michael. All Rights Reserved. 10/08/14

© 2008 Haim Michael. All Rights Reserved. 18

10/08/14 © 2008 Haim Michael. All Rights Reserved. 18

Input Validation

 In order to cope successfully with hacker who try to harm our

web application we better validate the data our PHP script

receives.

 We cannot count on client side validation using Java Script.

Hackers can easily remove it. Client side validation using

JavaScript contributes to our web application usability. It

doesn't contribute to its security.

 The temporary file is automatically destroyed when the script ends.

© 2008 Haim Michael. All Rights Reserved. 10/08/14

© 2008 Haim Michael. All Rights Reserved. 19

10/08/14 © 2008 Haim Michael. All Rights Reserved. 19

Input Validation

 It is a common practice to define variables we can easily

identify as variables that hold validated clean values. Including

the word 'clean' or a similar one in the name of each and every

clean variable will differentiate them from all others.

$email_address = $_GET['email'];

//validating email address

$email_address_clean = ...

 The temporary file is automatically destroyed when the script ends.

© 2008 Haim Michael. All Rights Reserved. 10/08/14

© 2008 Haim Michael. All Rights Reserved. 20

10/08/14 © 2008 Haim Michael. All Rights Reserved. 20

Input Validation

 The function filter_var that exists in PHP as of version 5.2

provides us with the simplest way to validate our input.

 The temporary file is automatically destroyed when the script ends.

© 2008 Haim Michael. All Rights Reserved. 10/08/14

© 2008 Haim Michael. All Rights Reserved. 21

10/08/14 © 2008 Haim Michael. All Rights Reserved. 21

Input Validation

<?php
$email_address_dirty = "haim.michael@gmail.com";
if(filter_var($email_address_dirty,FILTER_VALIDATE_EMAIL))
{
 $email_address_clean = $email_address_dirty;
}
echo $email_address_clean;
?>

 The temporary file is automatically destroyed when the script ends.

© 2008 Haim Michael. All Rights Reserved. 10/08/14

© 2008 Haim Michael. All Rights Reserved. 22

10/08/14 © 2008 Haim Michael. All Rights Reserved. 22

Input Validation

 The temporary file is automatically destroyed when the script ends.

© 2008 Haim Michael. All Rights Reserved. 10/08/14

© 2008 Haim Michael. All Rights Reserved. 23

10/08/14 © 2008 Haim Michael. All Rights Reserved. 23

The password_hash Function

 This function receives the password that needs to be hashed

and returns its hash value.

 The first argument is the password we need to hash. The

second argument is an integer value that represents the

specific algorithm we want to use.

 The temporary file is automatically destroyed when the script ends.

© 2008 Haim Michael. All Rights Reserved. 10/08/14

© 2008 Haim Michael. All Rights Reserved. 24

10/08/14 © 2008 Haim Michael. All Rights Reserved. 24

The password_hash Function

<?php
$str = "haimmichael";
echo password_hash($str, PASSWORD_DEFAULT)."\n";
?>

 The temporary file is automatically destroyed when the script ends.

© 2008 Haim Michael. All Rights Reserved. 10/08/14

© 2008 Haim Michael. All Rights Reserved. 25

10/08/14 © 2008 Haim Michael. All Rights Reserved. 25

The password_hash Function

The Output

 The temporary file is automatically destroyed when the script ends.

© 2008 Haim Michael. All Rights Reserved. 10/08/14

© 2008 Haim Michael. All Rights Reserved. 26

10/08/14 © 2008 Haim Michael. All Rights Reserved. 26

The hash Function

 This function calculates the hash value for the data we have.

Unlike the password_hash function, using the hash function

we have more algorithms to choose from. PHP 5.6 adds the

support for the gost-crypto algorithm.

 The temporary file is automatically destroyed when the script ends.

© 2008 Haim Michael. All Rights Reserved. 10/08/14

© 2008 Haim Michael. All Rights Reserved. 27

10/08/14 © 2008 Haim Michael. All Rights Reserved. 27

The hash Function

<?php
$vec = hash_algos();
var_dump($vec);

$password = "abcjojo123";
echo "\n".hash("gost-crypto",$password);
echo "\n".hash("gost-crypto",$password);
?>

 The temporary file is automatically destroyed when the script ends.

© 2008 Haim Michael. All Rights Reserved. 10/08/14

© 2008 Haim Michael. All Rights Reserved. 28

10/08/14 © 2008 Haim Michael. All Rights Reserved. 28

The hash Function

 The temporary file is automatically destroyed when the script ends.

© 2008 Haim Michael. All Rights Reserved. 10/08/14

© 2008 Haim Michael. All Rights Reserved. 29

10/08/14 © 2008 Haim Michael. All Rights Reserved. 29

The hash Function

 The temporary file is automatically destroyed when the script ends.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29

