
© 2008 Haim Michael. All Rights Reserved. 1

PHP Basic

© 2008 Haim Michael. All Rights Reserved. 2

PHP Syntax

 PHP Syntax is simple and easy to learn.

 PHP Syntax is derived from many languages (e.g. Java,

Perl, C and others).

 PHP code can be directly inserted into processed text files

(e.g. XML, HTML etc.) using special tags (AKA PHP Source

Files Tags).

© 2008 Haim Michael. All Rights Reserved. 3

PHP Source Files Tags

 The PHP source files tags allow embedding PHP code

within processed text files (HTML, XML etc.).

 There are four type of PHP source files tags:
Standard Tags

<?php ... ?>

Short Tags

<? ... ?> <?= $variable ?>

Script Tags

<script language=”php”> ... </script>

ASP Tags

<% %>

© 2008 Haim Michael. All Rights Reserved. 4

PHP Source Files Short Tags

 PHP 5.4 supports the following short tags by default. We

don't need to introduce any change in php.ini in order to

use them.

<?

…

?>

and

<?= expression ?>

© 2008 Haim Michael. All Rights Reserved. 5

PHP Source Files Short Tags

<?
$numA = 24;
$numB = 4;
?>

<h1><?=($numA+$numB)?></h1>

http://youtu.be/7tjw9T2tV28

© 2008 Haim Michael. All Rights Reserved. 6

PHP Source Files Short Tags

© 2008 Haim Michael. All Rights Reserved. 7

Script Structure

 The PHP script is composed of statements such as function

calls, variable assignments etc.

 In most cases, a PHP statement should end with a semi

colon, ';'.

© 2008 Haim Michael. All Rights Reserved. 8

Comments

 PHP allows four different syntax possibilities to write a

comment inside the code.

// single line comment

single line comment

/* multi line comment

 multi line comment */

/**

* API comment

*/

© 2008 Haim Michael. All Rights Reserved. 9

Whitespace

 PHP is a whitespace insensitive language. We can include

as many spaces as we want. It won't effect the execution of

our code.

© 2008 Haim Michael. All Rights Reserved. 10

Compound Statement

 A compound statement (AKA “Code Block”) is a simple

series of statements enclosed between two braces.

{

$a = 12;

$b = 14;

$sum = $a + $b;

}

© 2008 Haim Michael. All Rights Reserved. 11

The echo Statement

 The echo statement is a built-in language command. This is

not a function. Using echo we can write data back to the

script's output.

echo “Hello”; // will outout Hello

© 2008 Haim Michael. All Rights Reserved. 12

PHP Data Types

 PHP supports various different data types, categorized into

two categories.

 The two most important categories are “Compound Data

Types” & “Scalar Data Types”.

© 2008 Haim Michael. All Rights Reserved. 13

PHP Scalar Data Types

 A PHP scalar data type includes one value.

 PHP supports four scalar types:
boolean

A boolean can be 'true' or 'false' only.

int

An int is a signed numeric integer value.

float

A float is signed floating point value.

string

A string is a collection of binary data.

© 2008 Haim Michael. All Rights Reserved. 14

PHP Scalar Data Types

 A PHP scalar data type includes one value.

 PHP supports four scalar types:
boolean

A boolean can be 'true' or 'false' only.

int

An int is a signed numeric integer value.

float

A float is signed floating point value.

string

A string is a collection of binary data.

© 2008 Haim Michael. All Rights Reserved. 15

Binary Number Format

 As of PHP 5.4 we can write binary numbers using the

following syntax:

$num = 0b000101001010;

© 2008 Haim Michael. All Rights Reserved. 16

Binary Number Format

<?
$a = 0b1110; //14
$b = 0b1011; //11
$c = $a & $b; //0b1010
echo $c;
?>

http://youtu.be/eAB6i4lDU-k

© 2008 Haim Michael. All Rights Reserved. 17

Binary Number Format

© 2008 Haim Michael. All Rights Reserved. 18

PHP Compound Data Types

 A PHP compound data type can include more than one

value.

 PHP supports two compound data types:
Arrays

An array is a container of ordered data elements. These data elements can be of

any type.

Objects

An object is a container of data together with code.

© 2008 Haim Michael. All Rights Reserved. 19

The null Data Type

 The null keyword is a special PHP Data Type, and its

purpose is to indicate that a variable has no value.

 A variable is considered to be null if it has been assigned

with the special null value or if it still hasn't been assigned

a value.

 The null value can be expressed using any of the following

possible keywords: Null, null, NULL.

© 2008 Haim Michael. All Rights Reserved. 20

The null Data Type

<?php
$numA = null;
$numB = Null;
$numC = NULL;
$numD;
if($numA==null)
{
 echo "<p>numA";
}
if($numB==null)
{
 echo "<p>numB";
}
if($numC==null)
{
 echo "<p>numC";
}
if($numD==null)
{
 echo "<p>numD";
}
?>

http://www.youtube.com/watch?v=3fUhZVZuRfA

© 2008 Haim Michael. All Rights Reserved. 21

The null Data Type

© 2008 Haim Michael. All Rights Reserved. 22

The Resource Data Type

 The Resource is a special PHP Data Type that refers to

external resource (e.g. file, image etc.) which is not part of

the PHP native language.

© 2008 Haim Michael. All Rights Reserved. 23

The Type Conversion Operator

 Converting the data type of a given expression to another

data type is done by writing the name of the type to which

we want to convert within brackets and place them before

the expression.

$num1 = 10.5;

$num2 = 10.8;

$num3 = ((int)$num1)+((int)$num2);

echo $num3; //output would be 20

© 2008 Haim Michael. All Rights Reserved. 24

Variables

 A variables is a temporary containers that can hold a value.

 A variable can hold any type of data (e.g. strings, integers,

objects etc.).

 PHP is loosely typed programming language.

 We identify the variables by adding the dollar sign $ before

their name.

 Variables names must include letters (a-z,A-Z), numbers

and underscores only.

© 2008 Haim Michael. All Rights Reserved. 25

Variables

 A variables name must start either with a letter or an

underscore.

 PHP Variables names are case sensitive.

$_num1 OK

$2num NOT OK

$number12 OK

© 2008 Haim Michael. All Rights Reserved. 26

Variable Variables

 A variable variables is a variable that its name is contained

within another variable.

<?php

$var = 'abc';

$$var = 'hello';

echo $abc; //that should display 'hello'

?>

© 2008 Haim Michael. All Rights Reserved. 27

Function Name Within Variable

 We can assign a function name to be the value of a variable

we have. We can later use that variable in order to call the

function.

<?php

function doSomething() {echo 'Bonga Da'; }

$var = 'doSomething';

$var(); //that will result in calling the function

?>

http://www.youtube.com/watch?v=6mLp32bt8jk

© 2008 Haim Michael. All Rights Reserved. 28

Function Name Within Variable

© 2008 Haim Michael. All Rights Reserved. 29

Variables Existence Validation

Using the isset($var) function we can verify a required

variable does exist before we try to use it. If the variable

exists and has a value other than NULL we should get true.

<?php

$num1 = 12;

$num2;

$num3 = null;

echo "
num1... ";

echo isset($num1);

echo "
num2... ";

echo isset($num2);

echo "
num3... ";

echo isset($num3);

?>

http://www.youtube.com/watch?v=I5TdxTmHTn0

© 2008 Haim Michael. All Rights Reserved. 30

Variables Existence Validation

© 2008 Haim Michael. All Rights Reserved. 31

Constants

Constants are immutable values.

Constants in PHP can hold scalar data types only.

As with variables, constants names are case sensitive.

The rules for naming constants are the same rules for

naming variables (except for the leading $).

Using upper case when defining constants is a common

practice.

© 2008 Haim Michael. All Rights Reserved. 32

Constants

 In order to define a constant we need to use the 'define'

function in the following way:

define('CONSTANT_NAME', 'constant_value');

<?php

define('MAX_SPEED',120);

define('WEBSITE','www.zindell.com');

echo MAX_SPEED;

echo WEBSITE;

?>

http://www.zindell.com/
http://www.youtube.com/watch?v=IRXXxmMD9qE

© 2008 Haim Michael. All Rights Reserved. 33

Constants

© 2008 Haim Michael. All Rights Reserved. 34

Operators

PHP has the following types of operators:
Assignment Operators

Arithmetic Operators

String Operators

Comparison Operators

Logical Operators

Bitwise Operators

Error Control Operator

Execution Operator

Incrementing / Decrementing Operators

Type Operators

© 2008 Haim Michael. All Rights Reserved. 35

Arithmetic Operators

Perform basic mathematical operations:
+ Addition $num = 24 + 2;

- Subtraction $num = 24-3;

* Multiplication $num = 4*5;

/ Division $num = 40/8;

% Modules $num = 23 % 7;

© 2008 Haim Michael. All Rights Reserved. 36

Incrementing / Decrementing
Operators

These are unary operators (work on one operand only) that

work on a variable and increment/decrement its value by 1.

Their notation is ++ and - -.

 If placed before the variable then the variable is first been

incremented/decremented and then it is evaluated.

 If placed after the variable then the variable is first been

evaluated and then it is incremented/decremented.

© 2008 Haim Michael. All Rights Reserved. 37

Incrementing / Decrementing
Operators

<?php
$num1 = 12;
$num2 = 24;
$num3 = 32;
$num4 = ++$num2;
$num5 = $num3++;
$num6 = $num1--;
echo
"
num1=$num1";
echo
"
num2=$num2";
echo
"
num3=$num3";
echo
"
num4=$num4";
echo
"
num5=$num5";
echo
"
num6=$num6";
?>

num5 is first getting
the old value of num3
num3 is incremented
afterwards.

num6 is first getting
the old value of num1
num1 is decremented
afterwards.

© 2008 Haim Michael. All Rights Reserved. 38

String Operators

The concatenation operator allows us concatenate two

separated strings into one.

The string concatenation operator is a simple dot '.'.

<?php

$var1 = "Hello";

$var2 = "World!";

$total = $var1 . $var2;

echo "total=$total";

?>

© 2008 Haim Michael. All Rights Reserved. 39

Bitwise Operators

These operators allow manipulating bits of data.
&

Bitwise AND. Each bit will be set if (and only if) it is set in both operands.

|

Bitwise OR. Each bit will be set if it is set at least in one of the operands.

^

Bitwise XOR. Each bit will be set if (and only if) it is set in one of the operands

only.

>>

Bitwise right shift. Unset bits are inserted in the shifted positions.

<<

Bitwise left shift. Unset bits are inserted in the shifted positions.

© 2008 Haim Michael. All Rights Reserved. 40

Assignment Operators

This is the simple '=' used to assign a value inside a

variable.

$var = 24+3;

$var = $var + 3;

The assignment operator works 'by value'. Adding '&' before

the other variable its value is assigned to our variable, will

perform a 'by reference' assignment.

$var = 24;

$num = &$var;

$var=6;

echo $num; // The output will be 6.

© 2008 Haim Michael. All Rights Reserved. 41

Comparison Operators

Perform basic mathematical operations:
==

Equivalence (e.g. if(num1==num2)). This operator returns 'true' if the two

operands are of the same data type or can be converted to a common data type,

and have the same value in that type.

===

Identity (e.g. if(num1===num2)). This operator returns 'true' if the two operands

are of the same data type and have the same value in that type.

!=

Non Equivalent (e.g. if(num1!=num2)). This operator returns 'true' if the two

operands are not equivalent. Their data type is not important.

© 2008 Haim Michael. All Rights Reserved. 42

Comparison Operators

!==

Non Identical (e.g. if(num1!==num2)). This operator returns 'true' if the two

operands are not identical.

<

Less Than (e.g. if(num1<num2)). This operator returns 'true' if the right operand is

less than the right one.

<=

Less Than or Equal (e.g. if(num1<=num2)). This operator returns 'true' if the right

operand is less than or equal the right one.

© 2008 Haim Michael. All Rights Reserved. 43

Comparison Operators

>

Bigger Than (e.g. if(num1>num2)). This operator returns 'true' if the left

operand is bigger than the right one.

>=

Bigger Than or Equal (e.g. if(num1>=num2)). This operator returns 'true' if the left

operand is bigger than or equal the right one.

© 2008 Haim Michael. All Rights Reserved. 44

Logical Operators

Binary logical operators that connect separated boolean

values:
&&

Evaluates to true if both the right and left operands evaluate to true.

||

Evaluates to true if at least one of the right and left operands evaluate to true.

^

Evaluates to true if one (and only one) of the right and left operands evaluate to

true.

Unary logical operator that works on one operand:
!

Returns true if the operand is false and returns false if the operand is true.

© 2008 Haim Michael. All Rights Reserved. 45

Error Control Operator

Adding the error suppression operator @ to expression will

cause PHP runtime environment to ignore nearly all error

messages that occur during this expression evaluation.

$var = @mysql_connect();

© 2008 Haim Michael. All Rights Reserved. 46

Execution Operator

Using the backtick operator (`...`) it is possible to execute

code directly on the operation system, as if it was written in

the command line.

$temp = `ls`;

© 2008 Haim Michael. All Rights Reserved. 47

Operators Precedence & Associativity
Associativity Operator

left [
non associative ++
non associative ! ~ - (int) (float) (string) (array) (object) @
left * / %
left + - .
left << >>
non associative < <= > >=
non associative == != === !==
left &
left ^
left |
left &&
left ||
left ? :
right = += -= *= /= .= %= &= |= ^== <<= >>=
left and
left xor
left or
left ,

© 2008 Haim Michael. All Rights Reserved. 48

PHP Shorthand Operators

Similarly to other software programming languages, PHP

allows using the operators in the following shorthand way.

Given an expression with the following structure:
[Variable Name] = [Variable Name] [Operator] [Expression]

We can get the same outcome using the following syntax:
[Variable Name] [Operator]= [Expression]

The following are examples for this shorthand possibility.

$var+=12; is the same as $var=$var+12;

$var%=5; is the same as $var=$var%5;

© 2008 Haim Michael. All Rights Reserved. 49

Control Structures

PHP supports most of the common control structures you

know from other languages.

 In addition, PHP supports unique control structures that

simplify script development.

© 2008 Haim Michael. All Rights Reserved. 50

The if and if-else Statements

The well known if and if..else statements function

similarly as in most other languages.

if(expression1)
{

...
}
else
{

...
}

© 2008 Haim Michael. All Rights Reserved. 51

The Ternary Operator

The ternary operator enables embedding an if-then-else

statement inside one expression.

$temp=(expression)?'yes':'no'

© 2008 Haim Michael. All Rights Reserved. 52

The Switch Case Statement

The switch case statement in PHP works similarly to the

switch case construct in Java / C / C++.

switch($data)
{

case ___:
...
break;

case ___:
...
break;

default:
...

}

© 2008 Haim Michael. All Rights Reserved. 53

The while Statement

The while statement in PHP works similarly to the while

statement in Java / C / C++.

while(boolean_expression)
{

...

...

...
}

© 2008 Haim Michael. All Rights Reserved. 54

The do..while Statement

The do..while statement in PHP works similarly to the

do..while statement in Java / C / C++.

do
{

...

...
 ...
}
while(boolean_expression)

© 2008 Haim Michael. All Rights Reserved. 55

The for(..;..;..) Statement

The for(..;..;..) statement in PHP works similarly to

the for(..;..;..) statement in Java / C / C++.

for(exp_1; boolean_exp; exp_2)
{

...

...

}

© 2008 Haim Michael. All Rights Reserved. 56

The break Keyword

The break keyword in PHP works similarly to the break

keyword in Java / C / C++.

for(exp_1; boolean_exp; exp_2)
{

...

...
if(...) break;
...

}

© 2008 Haim Michael. All Rights Reserved. 57

The break Keyword

The break keyword in PHP has an optional parameter

through which we can exit both from this loop and from the

other loop\s surrounding it.

for(exp_1; boolean_exp; exp_2)
{

for(exp_1; boolean_exp; exp_2)
{

...
if(...) break 2; //exit both loops

}
} as of PHP 5.4 it is no longer possible to write variable arguments

after the break keyword. static arguments still work. as a side effect
of this change it is no longer possible to use the 0 value.

© 2008 Haim Michael. All Rights Reserved. 58

The break Keyword

<?php
for($a=1; $a<=10; $a++)
{
 for($b=1; $b<=10; $b++)
 {
 for($c=1; $c<=10; $c++)
 {
 echo "
"."a=".$a." b=".$b." c=".$c;
 if($c==5) break 3;
 }
 }
}
echo "
end";
?>

http://www.youtube.com/watch?v=iXFBJ0kNLng

© 2008 Haim Michael. All Rights Reserved. 59

The break Keyword

© 2008 Haim Michael. All Rights Reserved. 60

The continue Keyword

The continue keyword in PHP works similarly to the

continue keyword in Java / C / C++. Similarly to break

we can append it with a number in order to specify which

loop we want to continue to its next iteration.

for(exp_1; boolean_exp; exp_2)
{

...

...
if(...) continue;

}

© 2008 Haim Michael. All Rights Reserved. 61

The include Statement

The include function allows us to include within the

current PHP file another PHP file.

Useful when there is another PHP file that includes the

definition of functions\classes (or global variables) we want

to use.

<?php

include('another_file.php');

...

?>

© 2008 Haim Michael. All Rights Reserved. 62

The require Statement

The require function works the same as include with

one difference. In both cases, when errors occur a warning

message is produced. When using require we might also

get a fatal error.

http://www.youtube.com/watch?v=KXdevjE52jw

© 2008 Haim Michael. All Rights Reserved. 63

The include_once Statement

The include_once function works the same as include

with one difference. If the other PHP file was already

included it won't be included again.

<?php

include_once('another_file.php');

...

?>

© 2008 Haim Michael. All Rights Reserved. 64

The require_once Statement

The require_once function works the same as require

with one difference. If the other PHP file was already

included it won't be included again.

<?php

require_once('another_file.php');

...

?>

© 2008 Haim Michael. All Rights Reserved. 65

The empty() Function

This function receives a variable and returns true if that

variable is considered to be empty. The variable is

considered to be empty if it doesn't exist or if its value is

false.

As of PHP5.5 we can pass over to this function an

expression. If the expressions is evaluated to false then the

empty function will return true.

© 2008 Haim Michael. All Rights Reserved. 66

The empty() Function
<?php
function checknum($num) {
 if($num>0) return true; else return false;
}

if (empty(checknum(42))) {
 echo "42 ";
}

if (empty(checknum(-52))) {
 echo "-52 ";
}

if (empty(false)) {
 echo "false ";
}

if (empty(true)) {
 echo "true ";
}
?>

http://www.youtube.com/watch?v=n2AnAf2ltTs

© 2008 Haim Michael. All Rights Reserved. 67

The empty() Function

The Output

© 2008 Haim Michael. All Rights Reserved. 68

The Exponentiation Operator

As of PHP 5.6, the ** exponentiation operator allows us to

calculate the exponentiation of two numbers.

© 2008 Haim Michael. All Rights Reserved. 69

The Exponentiation Operator

<?php
$number = 2;
$result = $number ** 3;
echo "\n".$result;
$num = 2;
$num **= 3; //$num = $num ** 3
$num **= 2; //$num = $num ** 2
echo "\n".$num;
?>

https://www.youtube.com/watch?v=j4q7uclgRPY

© 2008 Haim Michael. All Rights Reserved. 70

The Exponentiation Operator

© 2008 Haim Michael. All Rights Reserved. 71

Constants Scalar Expressions

As of PHP 5.6, when creating a constant we can assign it

with a value of expression that includes the use of other

constants and scalars.

© 2008 Haim Michael. All Rights Reserved. 72

Constants Scalar Expressions

<?php
const SUNDAY = 1;
const MONDAY = SUNDAY + 1;

class Something {
 const TUESDAY = MONDAY + 1;
 const FRIDAY = 2 * Something::TUESDAY;
 const STR = 'The value of FRIDAY is '.Something::FRIDAY;

 public function getSeventhDay($number = Something::FRIDAY + 1)
 {
 return $number;
 }
}

echo (new Something())->getSeventhDay();
?>

https://www.youtube.com/watch?v=UCYaa99W-pY

© 2008 Haim Michael. All Rights Reserved. 73

Constants Scalar Expressions

03/22/16 © Haim Michael 2011. All Rights Reserved. 74

The <=> Operator

 The <=> operator is known as the combined comparison

operator. Its other name is the spaceship operator.

 It is a shorthand for performing three way comparisons

on two operands. The returned value is an integer, that

can be either positive, negative or 0.

03/22/16 © Haim Michael 2011. All Rights Reserved. 75

The <=> Operator

<?php
$a = "mama";
$b = "abba";
echo "<h1>a=$a</h1>";
echo "<h1>b=$b</h1>";
$temp = $a <=> $b;
echo "<h1>temp=$temp</h1>";
?>

https://youtu.be/OKgo-MpjvZw

03/22/16 © Haim Michael 2011. All Rights Reserved. 76

The <=> Operator

03/22/16 © Haim Michael 2011. All Rights Reserved. 77

The <=> Operator

 When using the <=> operator for comparing strings the

comparison will be a lexicographic one.

 We can use this operator for comparing arrays. The

comparison will be between the elements.

 We cannot use it for comparing objects.

03/22/16 © Haim Michael 2011. All Rights Reserved. 78

Unicode

 PHP 7 allows us to refer specific characters in the

unicode table.

<?php
echo "\u{0000a9}";
echo "\u{00a9}";
echo "\u{a9}";
?>

https://youtu.be/nc8nl2_PX1g

03/22/16 © Haim Michael 2011. All Rights Reserved. 79

The IntlChar Class

 This new class includes the definition for various static

methods and constants that assist with manipulating

unicode characters.

 In order to use this class we should install the Intl

extension.

echo IntlChar::charName('@');
var_dump(IntlChar::ispunct('!'));

03/22/16 © Haim Michael 2011. All Rights Reserved. 80

The intdiv() Function

 Using this new function, that was introduced by PHP 7,

we can divide two int numbers and get a result, which is

an int number as well.

03/22/16 © Haim Michael 2011. All Rights Reserved. 81

The intdiv() Function

<?php
$a = 30;
$b = 4;
$c = intdiv($a,$b);
//$c = $a / $b;
echo "<h1>".$c."</h1>";
?>

https://youtu.be/pjvrjXS3528

03/22/16 © Haim Michael 2011. All Rights Reserved. 82

The intdiv() Function

03/22/16 © Haim Michael 2011. All Rights Reserved. 83

Division By Zero Changes

 Before PHP 7, when dividing by 0 or calculating modulo

by 0 we got the value false of the type boolean.

 As of PHP 7, when calculating the modulo by 0 the

DivisionByZeroError exception will be thrown and when

trying to divide by 0 we will get +INF, -INT or NAN.

03/22/16 © Haim Michael 2011. All Rights Reserved. 84

Division By Zero Changes

<?php
$a = -512;
$b = 0;
$temp1 = $a / $b;
echo "<h1>temp1=".$temp1." ".gettype($temp1)."</h1>";
try
{
 $temp2 = $a % $b;
 echo "<h1>temp2=" . $temp2 . " " . gettype($temp2) . "</h1>";
}
catch(Throwable $throwable)
{
 echo "<h1>error happened</h1>";
}
?>

https://youtu.be/KULX4YuRO1Y

03/22/16 © Haim Michael 2011. All Rights Reserved. 85

Division By Zero Changes

03/22/16 © Haim Michael 2011. All Rights Reserved. 86

Numerical Strings Hex Support

 As of PHP 7, strings we create that include hexadecimal

numbers can no longer recognized as numerical.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86

