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PHP Basic
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PHP Syntax

 PHP Syntax is simple and easy to learn.

 PHP Syntax is derived from many languages (e.g. Java,

Perl, C and others).

 PHP code can be directly inserted into processed text files

(e.g. XML, HTML etc.) using special tags (AKA PHP Source

Files Tags). 
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PHP Source Files Tags

 The PHP source files tags allow embedding PHP code

within processed text files (HTML, XML etc.).

 There are four type of PHP source files tags:
Standard Tags

<?php  ...  ?>

Short Tags

<? ... ?>  <?= $variable ?> 

Script Tags

<script language=”php”>  ...   </script>

ASP Tags

<% .... %>
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PHP Source Files Short Tags

 PHP 5.4 supports the following short tags by default. We

don't need to introduce any change in php.ini in order to

use them.
  

<?

…

?>
   

and
  

<?= expression ?>
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PHP Source Files Short Tags

<?
$numA = 24;
$numB = 4;
?>

<h1><?=($numA+$numB)?></h1>

http://youtu.be/7tjw9T2tV28
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PHP Source Files Short Tags
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Script Structure

 The PHP script is composed of statements such as function

calls, variable assignments etc.

 In most cases, a PHP statement should end with a semi

colon, ';'. 
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Comments

 PHP allows four different syntax possibilities to write a

comment inside the code.
  

// single line comment

# single line comment

/* multi line comment

   multi line comment */

/**

*  API comment

*/
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Whitespace

 PHP is a whitespace insensitive language. We can include

as many spaces as we want. It won't effect the execution of

our code.  
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Compound Statement

 A compound statement (AKA “Code Block”) is a simple

series of statements enclosed between two braces.

{

$a = 12;

$b = 14;

$sum = $a + $b;

}
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The echo Statement

 The echo statement is a built-in language command. This is

not a function. Using echo we can write data back to the

script's output. 

echo “Hello”;  // will outout Hello
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PHP Data Types

 PHP supports various different data types, categorized into

two categories.

 The two most important categories are “Compound Data

Types” & “Scalar Data Types”. 
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PHP Scalar Data Types

 A PHP scalar data type includes one value. 

 PHP supports four scalar types:
boolean

A boolean can be 'true' or 'false' only.

int

An int is a signed numeric integer value.

float 

A float is signed floating point value.

string 

A string is a collection of binary data.
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PHP Scalar Data Types

 A PHP scalar data type includes one value. 

 PHP supports four scalar types:
boolean

A boolean can be 'true' or 'false' only.

int

An int is a signed numeric integer value.

float 

A float is signed floating point value.

string 

A string is a collection of binary data.
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Binary Number Format

 As of PHP 5.4 we can write binary numbers using the

following syntax:
   

$num = 0b000101001010;
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Binary Number Format

<?
$a = 0b1110; //14
$b = 0b1011; //11
$c = $a & $b; //0b1010
echo $c;
?>

http://youtu.be/eAB6i4lDU-k
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Binary Number Format
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PHP Compound Data Types

 A PHP compound data type can include more than one

value. 

 PHP supports two compound data types:
Arrays

An array is a container of ordered data elements. These data elements can be of

any type. 

Objects

An object is a container of data together with code. 
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The null Data Type

 The null keyword is a special PHP Data Type, and its

purpose is to indicate that a variable has no value. 

 A variable is considered to be null if it has been assigned

with the special null value or if it still hasn't been assigned

a value. 

 The null value can be expressed using any of the following

possible keywords: Null, null, NULL.
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The null Data Type

<?php
$numA = null;
$numB = Null;
$numC = NULL;
$numD;
if($numA==null)
{
 echo "<p>numA";
}
if($numB==null)
{
 echo "<p>numB";
}
if($numC==null)
{
 echo "<p>numC";
}
if($numD==null)
{
 echo "<p>numD";
}
?>

http://www.youtube.com/watch?v=3fUhZVZuRfA
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The null Data Type
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The Resource Data Type

 The Resource is a special PHP Data Type that refers to

external resource (e.g. file, image etc.) which is not part of

the PHP native language. 
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The Type Conversion Operator

 Converting the data type of a given expression to another

data type is done by writing the name of the type to which

we want to convert within brackets and place them before

the expression.
  

$num1 = 10.5;

$num2 = 10.8;

$num3 = ((int)$num1)+((int)$num2);

echo $num3;  //output would be 20
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Variables

 A variables is a temporary containers that can hold a value.

 A variable can hold any type of data (e.g. strings, integers,

objects etc.).

 PHP is loosely typed programming language. 

 We identify the variables by adding the dollar sign $ before

their name.

 Variables names must include letters (a-z,A-Z), numbers

and underscores only.  
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Variables

 A variables name must start either with a letter or an

underscore. 

 PHP Variables names are case sensitive. 

$_num1      OK

$2num NOT OK

$number12 OK
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Variable Variables

 A variable variables is a variable that its name is contained

within another variable.
  

<?php

$var = 'abc';

$$var = 'hello';

echo $abc;   //that should display 'hello'

?>
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Function Name Within Variable

 We can assign a function name to be the value of a variable

we have. We can later use that variable in order to call the

function.
  

<?php

function doSomething() {echo 'Bonga Da'; }

$var = 'doSomething';

$var(); //that will result in calling the function

?>

http://www.youtube.com/watch?v=6mLp32bt8jk
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Function Name Within Variable
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Variables Existence Validation

Using the isset($var) function we can verify a required

variable does exist before we try to use it. If the variable

exists and has a value other than NULL we should get true. 
    

<?php

$num1 = 12;

$num2;

$num3 = null;

echo "<BR>num1... ";

echo isset($num1);

echo "<BR>num2... ";

echo isset($num2);

echo "<BR>num3... ";

echo isset($num3);

?>

http://www.youtube.com/watch?v=I5TdxTmHTn0
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Variables Existence Validation
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Constants

Constants are immutable values.

Constants in PHP can hold scalar data types only. 

As with variables, constants names are case sensitive. 

The rules for naming constants are the same rules for

naming variables (except for the leading $).

Using upper case when defining constants is a common

practice.
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Constants

 In order to define a constant we need to use the 'define'

function in the following way:

define('CONSTANT_NAME', 'constant_value');

<?php 

define('MAX_SPEED',120);

define('WEBSITE','www.zindell.com');

echo MAX_SPEED;

echo WEBSITE;

?>

http://www.zindell.com/
http://www.youtube.com/watch?v=IRXXxmMD9qE
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Constants



© 2008 Haim Michael. All Rights Reserved. 34

Operators

PHP has the following types of operators:
Assignment Operators

Arithmetic Operators

String Operators

Comparison Operators

Logical Operators

Bitwise Operators

Error Control Operator

Execution Operator

Incrementing / Decrementing Operators

Type Operators
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Arithmetic Operators

Perform basic mathematical operations:
+ Addition $num = 24 + 2;

- Subtraction $num = 24-3;

* Multiplication $num = 4*5;

/ Division $num = 40/8;

% Modules $num = 23 % 7;
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Incrementing / Decrementing
Operators

These are unary operators (work on one operand only) that

work on a variable and increment/decrement its value by 1. 

Their notation is ++ and - -.

 If placed before the variable then the variable is first been

incremented/decremented and then it is evaluated. 

 If placed after the variable then the variable is first been

evaluated and then it is incremented/decremented.
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Incrementing / Decrementing
Operators

<?php 
$num1 = 12;
$num2 = 24;
$num3 = 32;
$num4 = ++$num2;
$num5 = $num3++;
$num6 = $num1--;
echo
"<BR>num1=$num1";
echo
"<BR>num2=$num2";
echo
"<BR>num3=$num3";
echo
"<BR>num4=$num4";
echo
"<BR>num5=$num5";
echo
"<BR>num6=$num6";
?>

num5 is first getting 
the old value of num3
num3 is incremented
afterwards.

num6 is first getting 
the old value of num1
num1 is decremented
afterwards.
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String Operators

The concatenation operator allows us concatenate two

separated strings into one.

The string concatenation operator is a simple dot '.'. 

<?php 

$var1 = "Hello";

$var2 = "World!";

$total = $var1 . $var2;

echo "total=$total";

?>
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Bitwise Operators

These operators allow manipulating bits of data.
&

Bitwise AND. Each bit will be set if (and only if) it is set in both operands.

|

Bitwise OR. Each bit will be set if it is set at least in one of the operands.

^

Bitwise XOR. Each bit will be set if (and only if) it is set in one of the operands

only.

>>

Bitwise right shift. Unset bits are inserted in the shifted positions. 

<<

Bitwise left shift. Unset bits are inserted in the shifted positions. 
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Assignment Operators

This is the simple '=' used to assign a value inside a

variable. 
  

$var = 24+3;

$var = $var + 3;

The assignment operator works 'by value'. Adding '&' before

the other variable its value is assigned to our variable, will

perform a 'by reference' assignment.
 

$var = 24;

$num = &$var;

$var=6;

echo $num;     // The output will be 6.
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Comparison Operators

Perform basic mathematical operations:
==

Equivalence (e.g. if(num1==num2)). This operator returns 'true' if the two

operands are of the same data type or can be converted to a common data type,

and have the same value in that type. 

===

Identity (e.g. if(num1===num2)). This operator returns 'true' if the two operands

are of the same data type and have the same value in that type. 

!=

Non Equivalent (e.g. if(num1!=num2)). This operator returns 'true' if the two

operands are not equivalent. Their data type is not important. 
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Comparison Operators
  

!==

Non Identical (e.g. if(num1!==num2)). This operator returns 'true' if the two

operands are not identical. 

<

Less Than (e.g. if(num1<num2)). This operator returns 'true' if the right operand is

less than the right one.

<=

Less Than or Equal (e.g. if(num1<=num2)). This operator returns 'true' if the right

operand is less than or equal the right one.
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Comparison Operators

>

Bigger Than (e.g. if(num1>num2)). This operator returns 'true' if the left

operand is bigger than the right one.

>=

Bigger Than or Equal (e.g. if(num1>=num2)). This operator returns 'true' if the left

operand is bigger than or equal the right one.
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Logical Operators

Binary logical operators that connect separated boolean

values:
&& 

Evaluates to true if both the right and left operands evaluate to true. 

|| 

Evaluates to true if at least one of the right and left operands evaluate to true.

^

Evaluates to true if one (and only one) of the right and left operands evaluate to

true. 

Unary logical operator that works on one operand:
! 

Returns true if the operand is false and returns false if the operand is true.
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Error Control Operator

Adding the error suppression operator @ to expression will

cause PHP runtime environment to ignore nearly all error

messages that occur during this expression evaluation.

$var = @mysql_connect();
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Execution Operator

Using the backtick operator (`...`) it is possible to execute

code directly on the operation system, as if it was written in

the command line. 

$temp = `ls`;
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Operators Precedence & Associativity
Associativity Operator
   

left [
non associative ++
non associative ! ~ - (int) (float) (string) (array) (object) @
left * / %
left + - .
left << >>
non associative < <= > >=
non associative == !=   ===  !==
left &
left ^
left |
left &&
left ||
left ?     :
right =  +=   -=    *=   /=   .=    %=   &=   |=   ^==   <<=    >>=
left and
left xor
left or
left ,
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PHP Shorthand Operators

Similarly to other software programming languages, PHP

allows using the operators in the following shorthand way.

Given an expression with the following structure:
[Variable Name] = [Variable Name] [Operator] [Expression]

We can get the same outcome using the following syntax:
[Variable Name] [Operator]= [Expression]

The following are examples for this shorthand possibility.

$var+=12;   is the same as   $var=$var+12;

$var%=5;    is the same as   $var=$var%5;
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Control Structures

PHP supports most of the common control structures you

know from other languages.

 In addition, PHP supports unique control structures that

simplify script development. 



© 2008 Haim Michael. All Rights Reserved. 50

The if and if-else Statements

The well known if and if..else statements function

similarly as in most other languages.  

if(expression1)
{

...
}
else 
{

...
}
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The Ternary Operator

The ternary operator enables embedding an if-then-else

statement inside one expression.  

$temp=(expression)?'yes':'no'
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The Switch Case Statement

The switch case statement in PHP works similarly to the

switch case construct in Java / C / C++.  

switch($data)
{

case ___:
...
break;

case ___:
...
break;

default:
...

}
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The while Statement

The while statement in PHP works similarly to the while 

statement in Java / C / C++.  

while(boolean_expression)
{

...

...

...
}
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The do..while Statement

The do..while statement in PHP works similarly to the

do..while statement in Java / C / C++.  

do 
{ 

... 

...
 ...
} 
while(boolean_expression)
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The for(..;..;..) Statement

The for(..;..;..) statement in PHP works similarly to

the for(..;..;..) statement in Java / C / C++.  

for(exp_1; boolean_exp; exp_2)
{

...

...

}
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The break Keyword

The break keyword in PHP works similarly to the break 

keyword in Java / C / C++.  

for(exp_1; boolean_exp; exp_2)
{

...

...
if(...) break;
...

}
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The break Keyword

The break keyword in PHP has an optional parameter

through which we can exit both from this loop and from the

other loop\s surrounding it.

for(exp_1; boolean_exp; exp_2)
{

for(exp_1; boolean_exp; exp_2)
{

...
if(...) break 2;  //exit both loops

}
} as of PHP 5.4 it is no longer possible to write variable arguments

after the break keyword. static arguments still work. as a side effect 
of this change it is no longer possible to use the 0 value. 
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The break Keyword

<?php 
for($a=1; $a<=10; $a++)
{
 for($b=1; $b<=10; $b++)
 {
 for($c=1; $c<=10; $c++)
 {
 echo "<br>"."a=".$a." b=".$b." c=".$c;
 if($c==5) break 3;
 }
 }
}
echo "<br/>end";
?>

http://www.youtube.com/watch?v=iXFBJ0kNLng
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The break Keyword
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The continue Keyword

The continue keyword in PHP works similarly to the

continue keyword in Java / C / C++. Similarly to break 

we can append it with a number in order to specify which

loop we want to continue to its next iteration.

for(exp_1; boolean_exp; exp_2)
{

...

...
if(...) continue;

}
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The include Statement

The include function allows us to include within the

current PHP file another PHP file. 

Useful when there is another PHP file that includes the

definition of functions\classes (or global variables) we want

to use.

<?php

include('another_file.php');

...

?>



© 2008 Haim Michael. All Rights Reserved. 62

The require Statement

The require function works the same as include with

one difference. In both cases, when errors occur a warning

message is produced. When using require we might also

get a fatal error. 

http://www.youtube.com/watch?v=KXdevjE52jw
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The include_once Statement

The include_once function works the same as include 

with one difference. If the other PHP file was already

included it won't be included again. 

<?php

include_once('another_file.php');

...

?>



© 2008 Haim Michael. All Rights Reserved. 64

The require_once Statement

The require_once function works the same as require 

with one difference. If the other PHP file was already

included it won't be included again. 

<?php

require_once('another_file.php');

...

?>
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The empty() Function

This function receives a variable and returns true if that

variable is considered to be empty. The variable is

considered to be empty if it doesn't exist or if its value is

false.

As of PHP5.5 we can pass over to this function an

expression. If the expressions is evaluated to false then the

empty function will return true. 
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The empty() Function
<?php
function checknum($num) {
    if($num>0) return true; else return false;
}

if (empty(checknum(42))) {
    echo "42   ";
}

if (empty(checknum(-52))) {
    echo "-52   ";
}

if (empty(false)) {
    echo "false   ";
}

if (empty(true)) {
    echo "true   ";
}
?>

http://www.youtube.com/watch?v=n2AnAf2ltTs
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The empty() Function

The Output
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The Exponentiation Operator

As of PHP 5.6, the ** exponentiation operator allows us to

calculate the exponentiation of two numbers.
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The Exponentiation Operator

<?php
$number = 2;
$result = $number ** 3;
echo "\n".$result;
$num = 2;
$num **= 3; //$num = $num ** 3
$num **= 2; //$num = $num ** 2
echo "\n".$num;
?>

https://www.youtube.com/watch?v=j4q7uclgRPY
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The Exponentiation Operator
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Constants Scalar Expressions

As of PHP 5.6, when creating a constant we can assign it

with a value of expression that includes the use of other

constants and scalars. 
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Constants Scalar Expressions

<?php
const SUNDAY = 1;
const MONDAY = SUNDAY + 1;

class Something {
    const TUESDAY = MONDAY + 1;
    const FRIDAY = 2 * Something::TUESDAY;
    const STR = 'The value of FRIDAY is '.Something::FRIDAY;

    public function getSeventhDay($number = Something::FRIDAY + 1)
    {
        return $number;
    }
}

echo (new Something())->getSeventhDay();
?>

https://www.youtube.com/watch?v=UCYaa99W-pY
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Constants Scalar Expressions
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The <=> Operator

 The <=> operator is known as the combined comparison

operator. Its other name is the spaceship operator. 

 It is a shorthand for performing three way comparisons

on two operands. The returned value is an integer, that

can be either positive, negative or 0.
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The <=> Operator

<?php
$a = "mama";
$b = "abba";
echo "<h1>a=$a</h1>";
echo "<h1>b=$b</h1>";
$temp = $a <=> $b;
echo "<h1>temp=$temp</h1>";
?>

https://youtu.be/OKgo-MpjvZw
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The <=> Operator
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The <=> Operator

 When using the <=> operator for comparing strings the

comparison will be a lexicographic one. 

 We can use this operator for comparing arrays. The

comparison will be between the elements. 

 We cannot use it for comparing objects. 
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Unicode

 PHP 7 allows us to refer specific characters in the

unicode table. 

<?php
echo "\u{0000a9}";
echo "\u{00a9}";
echo "\u{a9}";
?>

https://youtu.be/nc8nl2_PX1g
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The IntlChar Class

 This new class includes the definition for various static

methods and constants that assist with manipulating

unicode characters. 

 In order to use this class we should install the Intl

extension.

echo IntlChar::charName('@');
var_dump(IntlChar::ispunct('!')); 
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The intdiv() Function

 Using this new function, that was introduced by PHP 7,

we can divide two int numbers and get a result, which is

an int number as well.
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The intdiv() Function

<?php
$a = 30;
$b = 4;
$c = intdiv($a,$b);
//$c = $a / $b;
echo "<h1>".$c."</h1>";
?>

https://youtu.be/pjvrjXS3528
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The intdiv() Function
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Division By Zero Changes

 Before PHP 7, when dividing by 0 or calculating modulo

by 0 we got the value false of the type boolean. 

 As of PHP 7, when calculating the modulo by 0 the

DivisionByZeroError exception will be thrown and when

trying to divide by 0 we will get +INF, -INT or NAN. 
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Division By Zero Changes

<?php
$a = -512;
$b = 0;
$temp1 = $a / $b;
echo "<h1>temp1=".$temp1."     ".gettype($temp1)."</h1>";
try
{
    $temp2 = $a % $b;
    echo "<h1>temp2=" . $temp2 . "     " . gettype($temp2) . "</h1>";
}
catch(Throwable $throwable)
{
    echo "<h1>error happened</h1>";
}
?>

https://youtu.be/KULX4YuRO1Y
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Division By Zero Changes
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Numerical Strings Hex Support

 As of PHP 7, strings we create that include hexadecimal

numbers can no longer recognized as numerical. 
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