
Object Oriented Programming

10/31/15 © Haim Michael 2009. All Rights Reserved. 2

Introduction

 PHP support for object oriented programming (OOP) is one

of the major changes introduced by PHP 5.

10/31/15 © Haim Michael 2009. All Rights Reserved. 3

Declaring a Class

 The basic syntax used when declaring a class is:

class [class name]

{

...

}

Example:

class Rectangle

{

...

}

10/31/15 © Haim Michael 2009. All Rights Reserved. 4

Class Instantiation

 Instantiating a class is done by using the new construct.

$var = new [class name]();

Example:

$myRectangle = new Rectangle();

10/31/15 © Haim Michael 2009. All Rights Reserved. 5

Object by Reference

Starting with PHP 5, an object is always treated using its

reference rather than its value.
Example:

$rec1 = new Rectangle();

$rec2 = $rec1;

Both $rec1 and $rec2 point to the same object. Both $rec1 and $rec2 hold the

same reference for the same object.

10/31/15 © Haim Michael 2009. All Rights Reserved. 6

The '->' Operator

Calling a method on a specific object is done using the '->'

operator.

class Xyz

{

function foo() { echo “xyz”; }

}

$xyz = new Xyz();

$xyz -> foo();

10/31/15 © Haim Michael 2009. All Rights Reserved. 7

The '->' Operator

Calling a method from within another method (on the same

object) should be done using '$this'. Unlike Java, C++ and

C# PHP doesn't allow calling another method without using

the '$this' keyword.

10/31/15 © Haim Michael 2009. All Rights Reserved. 8

The '->' Operator

Accessing a variable within an object is done using the '->'

operator.

class Xyz

{

var $num;

}

$xyz = new Xyz();

$xyz -> num = 9;

10/31/15 © Haim Michael 2009. All Rights Reserved. 9

Constructor

A constructor is a special function called when the class is

instantiated.

The constructor name should be either __construct or a

name identical to the name of the class.

10/31/15 © Haim Michael 2009. All Rights Reserved. 10

Constructor

<?php

class Rectangle

{

var $width;

 var $height;

function Rectangle($numA,$numB)

{

$this->width=$numA;

$this->height=$numB;

}

function area() { return $this->width*$this->height; }

}

10/31/15 © Haim Michael 2009. All Rights Reserved. 11

Constructor

$ob = new Rectangle(5,2)

echo $ob->area();

?>

10/31/15 © Haim Michael 2009. All Rights Reserved. 12

Destructor

The destructor is a special function called when the object

ends its life.

We can place within the destructor commands to free

resources the object used.

The destructor name must be __destruct.

10/31/15 © Haim Michael 2009. All Rights Reserved. 13

Destructor

<?php

class Rectangle

{

var $width;

 var $height;

function __destruct()

{

...

}

}

?>

10/31/15 © Haim Michael 2009. All Rights Reserved. 14

The $this Keyword

Within the scope of every method we can refer the current

object using $this.

Trying to access object's variables should be done using the

$this keyword and the arrow -> operator. When doing so

there is no need to specify $ before the variable name.
...

function setWidth($val)

{

 $this->width = $val;

}

...

10/31/15 © Haim Michael 2009. All Rights Reserved. 15

The Scope

 PHP 5 allows us defining each one of the class variables

and each one of the class functions with a scope:

public ...can be accessed from any scope (default).

protected ...can be accessed from within the class and its descendants.

private ...can be accessed from within the class only.

10/31/15 © Haim Michael 2009. All Rights Reserved. 16

The Scope

<?php

class Rectangle

{

private $width;

private $height;

function __construct($wval, $hval)

{

$this->set_width($wval);

$this->set_height($hval;

}

function area()

{

return $this->width*$this->height;

}

10/31/15 © Haim Michael 2009. All Rights Reserved. 17

The Scope

function set_width($val)

{

if($val>0)

{

$this->width = $val;

}

}

function set_height($val)

{

if($val>0)

{

$this->height = $val;

}

}

10/31/15 © Haim Michael 2009. All Rights Reserved. 18

The Scope

function details()

{

echo "width=";

echo $this->width;

echo "
";

echo "height=";

echo $this->height;

echo "
";

echo "area=";

echo $this->area();

}

}

$rec = new Rectangle(5,3);

$rec->details();

?>

10/31/15 © Haim Michael 2009. All Rights Reserved. 19

Inheritance

Declaring a class that extends another is done using the

extends construct.

class Aaa

{

...

}

class Bbb extends Aaa

{

...

}

10/31/15 © Haim Michael 2009. All Rights Reserved. 20

Overriding Methods

Declaring a class extending another allows adding new

method and new properties as well as declaring methods

that already exist (overriding).

class Aaa

{

function doSomething() {echo “Aaa something”;}

}

class Bbb extends Aaa

{

function doSomething() {echo “Bbb something”;}

}

10/31/15 © Haim Michael 2009. All Rights Reserved. 21

Overriding Methods

<?php
class Aaa
{

function doSomething()
{

echo "a something";
}

}
class Bbb extends Aaa
{

function doSomething()
{

echo "b something";
 }

}
$ob_b = new Bbb();
$ob_b->doSomething();

?>

10/31/15 © Haim Michael 2009. All Rights Reserved. 22

The 'parent::' Construct

Using the 'parent::' construct it is possible to access the parent

class' method version.

class Aaa

{

function doSomething() {echo “Aaa something”;}

}

class Bbb extends Aaa

{

function doSomething() {parent::doSomething(); echo “Bbb”;}

}

10/31/15 © Haim Michael 2009. All Rights Reserved. 23

The 'parent::' Construct

<?php
class Aaa
{

function doSomething()
{

echo "a something";
}

}
class Bbb extends Aaa
{

function doSomething()
{

parent::doSomething();
 }

}
$ob_b = new Bbb();
$ob_b->doSomething();

?>

10/31/15 © Haim Michael 2009. All Rights Reserved. 24

The 'final' Keyword

 Adding 'final' to our class definition will ensure that we

won't be able to extend that class.

 Adding 'final' to our method definition will ensure that we

won't be able to override that method.

10/31/15 © Haim Michael 2009. All Rights Reserved. 25

The 'final' Keyword

<?php
class Person
{

private $name;
private $id;

function Person($name_val,$id_val)
{

$this->name = $name_val;
$this->$id = $id_val;

}

final function set_id($val)
{

if($val>0 && $val<1000)
{

$this->id = $val;
}

}
}
?>

10/31/15 © Haim Michael 2009. All Rights Reserved. 26

The 'final' Keyword

<?php
final class Person
{

private $name;
private $id;

function Person($name_val,$id_val)
{

$this->name = $name_val;
$this->id = $id_val;

}

function set_id($val)
{

if($val>0 && $val<1000)
{

$this->id = $val;
}

}
}
?>

10/31/15 © Haim Michael 2009. All Rights Reserved. 27

Properties Initialization

 When defining a class property (variable) it is possible to

initialize it with a value.

 That value can not be an expression.

class Circle

{

var $radius = 8;

function details()

{

echo “radius=”;

echo $this->radius;

}

}

10/31/15 © Haim Michael 2009. All Rights Reserved. 28

Static Methods & Static Properties

 Adding the 'static' keyword to our method / variable

definition will turn it into a static one.

 Static method doesn't work on a specific object.

 Static variable is not duplicated for each one of the

instantiated objects.

 Calling a static method should be done by writing the class

name following “::” preceding the static method we call.

10/31/15 © Haim Michael 2009. All Rights Reserved. 29

Static Methods & Static Properties

<?php
class Utils
{

static $interest = 5.4;
static function sum($a,$b)
{

return $a+$b;
}
static function multiply($a,$b)
{

return $a*$b;
}

}
echo Utils::sum(4,5);
echo "
";
echo Utils::multiply(4,5);
echo "
";
echo Utils::$interest;
?>

http://www.youtube.com/watch?v=DpbSAtAxMdY

10/31/15 © Haim Michael 2009. All Rights Reserved. 30

Static Methods & Static Properties

10/31/15 © Haim Michael 2009. All Rights Reserved. 31

Class Constants

 Class constants are constants (as any other constant)

except for the fact they are scoped within a class.

class [class name]

{

const [constant name] = [constant value];

}

class Something

{

const SCHOOL_NAME = “De Shalit”;

}

10/31/15 © Haim Michael 2009. All Rights Reserved. 32

Class Constants

 Accessing a class constant is done by writing the class

name + “::” preceding the constant name.

echo [class name]::[constant name];

echo Something::SCHOOL_NAME;

10/31/15 © Haim Michael 2009. All Rights Reserved. 33

Abstract Class

 Adding the 'abstract' keyword to the class definition and

include within that class the definition for one (or more)

abstract methods will turn that class into an abstract one.

 An abstract method is a method with the 'abstract'

keyword in its declaration and without a body.

 It is impossible to instantiate an abstract class. There is a

need to extend it and override each one of the abstract

methods in order to be able to instantiate the new class.

10/31/15 © Haim Michael 2009. All Rights Reserved. 34

Abstract Class

 When we define an abstract method we cannot use the

private access modifier. It is impossible to define a private

abstract method.

10/31/15 © Haim Michael 2009. All Rights Reserved. 35

Abstract Class

<?php

abstract class Shape
{
 abstract function area();
}

class Rectangle extends Shape
{
 private $width;
 private $height;
 public function __construct($wval,$hval)

{
 $this->width = $wval;

 $this->height = $hval;
}
public function area()
{

 return $this->width * $this->height;
}

}

http://www.youtube.com/watch?v=-JcnERLDS_8

10/31/15 © Haim Michael 2009. All Rights Reserved. 36

Abstract Class
class Circle extends Shape
{
 private $radius;
 public function __construct($num)
 {
 $this->radius = $num;
 }
 public function area()
 {
 return $this->radius * $this->radius * 3.14;

}
}

$rec = new Rectangle(5,2);
echo $rec->area();
echo "
";

$circ = new Circle(4);
echo $circ->area();
echo "
";

?>

10/31/15 © Haim Michael 2009. All Rights Reserved. 37

Abstract Class

10/31/15 © Haim Michael 2009. All Rights Reserved. 38

Interface
 We use the 'interface' keyword in order to define an

interface. Similarly to defining a class. The differences are:

1. Instead of using the 'class' keyword we use 'interface'.

2. Within the interface we can define abstract methods only.

3. Within the interface we cannot define neither a constructor or a destructor.

 We can define a class and mention that it implements an

interface. To do so, we use the 'implements' keyword.

 Interfaces can be used to abstract the behavior of an

expected component.

10/31/15 © Haim Michael 2009. All Rights Reserved. 39

Interface
 Unlike a class that can extend one other class only, it is

possible to define a class that implements more than one

interface. We should write the names of each one of the

interfaces separated with a commas.

class Something implements Driveable, Cloneable, Printable

{

.

.

.

}

10/31/15 © Haim Michael 2009. All Rights Reserved. 40

Interface

interface Printable
{

function print_details();
}

class Rectangle implements Printable
{

private $width;
private $height;
public function Rectangle($w_val,$h_val)
{

$this->width = $w_val;
$this->height = $h_val;

}
public function print_details()
{

echo "rectangle... width=".$this->width." height=".$this->height;
}

}

10/31/15 © Haim Michael 2009. All Rights Reserved. 41

Interface

class Person implements Printable
{

private $name;
private $id;
public function Person($n_val,$id_val)
{

$this->name = $n_val;
$this->id = $id_val;

}
public function print_details()
{

echo "person... name=$this->name id=$this->id";
}

}

10/31/15 © Haim Michael 2009. All Rights Reserved. 42

Interface

class Car implements Printable
{

private $name;
private $id;
public function Car($n_val,$id_val)
{

$this->name = $n_val;
$this->id = $id_val;

}
public function print_details()
{

echo "car... name=$this->name id=$this->id";
}

}

10/31/15 © Haim Michael 2009. All Rights Reserved. 43

Interface

$vec = array();
$vec[0] = new Car("Toyota",233423);
$vec[1] = new Car("Ford",2435434);
$vec[2] = new Rectangle(8,4);
$vec[3] = new Rectangle(10,8);
$vec[4] = new Person("John",46354);
$vec[5] = new Person("Moshe",463445);

foreach($vec as $ob)
{

$ob->print_details();
echo "
";

}

10/31/15 © Haim Michael 2009. All Rights Reserved. 44

The 'instanceof' Operator

 Using the 'instanceof' operator it is possible to determine

whether a given object is an instance of a specific class or

of a class that implements a specific interface.

if([object variable] instanceof [class or interface name])

{

...

}
The value of this boolean expression is true if one of the following is true:
(1) The object was instantiated from a class that implements the specified interface.
(2) The object was instantiated from the specified class.
(3) The object was instantiated from a class that extends the specified class

10/31/15 © Haim Michael 2009. All Rights Reserved. 45

Objects Serialization

 Similarly to Java, PHP allows us to serialize objects into a

storable representation.

We can later store it into a file or send it over the network to another application.

 The serialize function receives an object and returns its

storable representation.
...

$ob = new Car();

$ob_ser = serialize($ob);

...

10/31/15 © Haim Michael 2009. All Rights Reserved. 46

Objects Serialization

 The unserialize function can receives a storable

representation of a given object and creates a new object

based on it.
...

$another_ob = unserialize($ob_ser);

...

10/31/15 © Haim Michael 2009. All Rights Reserved. 47

Objects Serialization

 It is possible to change the default behavior of the serialize

function by defining the __sleep and the __wakeup magic

functions within the class from which the objects were

instantiated.

 The __sleep function should return an array that its values

are the names of the object's variables we want to include in

its storeable representation.

10/31/15 © Haim Michael 2009. All Rights Reserved. 48

Objects Serialization

 The __wakeup function should include the code we want to

be executed when a new object is created based on a

storable representation.

10/31/15 © Haim Michael 2009. All Rights Reserved. 49

Objects Serialization
<?php

class Trip
{

private $id;
private $name;
private $participants;
private $trip_time;

...

public function __sleep()
{

 return array('id','name');
}

public function __wakeup()
{

 $this->trip_time = date("F j, Y, g:i a");
}

}
?>

10/31/15 © Haim Michael 2009. All Rights Reserved. 50

The __toString Function

 Defining the __toString method within our class we can

set the behavior when objects instantiated from our class

are converted to string.

 The __toString should return a string. That string will be

the outcome when converting an object into a string.

10/31/15 © Haim Michael 2009. All Rights Reserved. 51

The __toString Function

<?php
class Person
{
 private $id;
 private $name;
 function Person($name_val,$id_val)

{
$this->id = $id_val;
$this->name = $name_val;

}
function __toString()
{

$id_var = $this->id;
$name_var = $this->name;
return "## ".$id_var." ".$name_var." ##";

}
}

$ob = new Person("David",123123);
echo $ob;
?>

10/31/15 © Haim Michael 2009. All Rights Reserved. 52

The __invoke Function

 Defining __invoke within our class we can set the behavior

when trying to call an object as if it was a function.
This magic function is available since PHP 5.3.0.

10/31/15 © Haim Michael 2009. All Rights Reserved. 53

The __invoke Function

<?php
class Student
{

private $id;
private $name;
private $average;
function Student($name_val,$id_val,$average_val)
{

$this->id = $id_val;
$this->name = $name_val;
$this->average = $average_val;

}
function __toString()
{

$id_var = $this->id;
$average_var = $this->average;
return "## ".$id_var." ".$average_var." ##";

}

10/31/15 © Haim Michael 2009. All Rights Reserved. 54

The __invoke Function

function __invoke($var)
{

$this->average=$var;
}

}

$ob = new Student("David",123123,94);
$ob(100);
echo $ob;
?>

10/31/15 © Haim Michael 2009. All Rights Reserved. 55

The __invoke Function

 We can use the __invoke magic method as if we were

using delegates in C#.

http://www.youtube.com/watch?v=u5Goep_BUYg

10/31/15 © Haim Michael 2009. All Rights Reserved. 56

The __invoke Function

<?php
class Account
{

private $id;
private $balance;
function __construct($idVal,$balanceVal)
{

$this->setId($idVal);
$this->setBalance($balanceVal);

}
function setId($num)
{

if($num>0)
{

$this->id = $num;
}

}

10/31/15 © Haim Michael 2009. All Rights Reserved. 57

The __invoke Function

function setBalance($sum)
{

$this->balance = $sum;
}
function deposit($sum)
{

$this->balance += $sum;
}
function __invoke($sum)
{

$this->deposit($sum);
}
function __toString()
{

return "[id=$this->id balance=$this->balance]";
}

}

10/31/15 © Haim Michael 2009. All Rights Reserved. 58

The __invoke Function

<?php
class Utils
{

static function transfer($sum,$from,$to)
{

$from(-$sum);
$to($sum);

}
}
?>

10/31/15 © Haim Michael 2009. All Rights Reserved. 59

The __invoke Function

<?php
include "Account.php";
include "Utils.php";
$accountA = new Account(1,200);
$accountB = new Account(2,300);
//echo "
$accountA";
//$accountA(33);
//echo "
$accountA";
echo "
$accountA $accountB";
Utils::transfer(50,$accountA,$accountB);
echo "
$accountA $accountB";
?>

10/31/15 © Haim Michael 2009. All Rights Reserved. 60

The __invoke Function

10/31/15 © Haim Michael 2009. All Rights Reserved. 61

The __autoload Function

 Defining the __autoload function we can specify the code

we want to execute when a required class is loaded into the

memory.

10/31/15 © Haim Michael 2009. All Rights Reserved. 62

The __autoload Function

<?php

function __autoload($classname)
{

echo "inside __autoload<p>";
include $classname.".php";

}

$ob = new Student("mosh");
echo "just text<p>";
echo $ob;

?>

demo.php

http://www.youtube.com/watch?v=tEkjQAM24Iw

10/31/15 © Haim Michael 2009. All Rights Reserved. 63

The __autoload Function

<?php
class Student
{

var $firstname;
function __construct($str)
{

$this->firstname = $str;
}
function __toString()
{

return $this->firstname;
}

}
?>

Student.php

10/31/15 © Haim Michael 2009. All Rights Reserved. 64

The __autoload Function

10/31/15 © Haim Michael 2009. All Rights Reserved. 65

Type Hinting

 When defining a function we can force its parameters to be

of a specific class type.

 We do it by defining the parameters preceding with a

specific name of a class or an interface.
When passing a value to such parameter it must be a reference for object of the

specified type (or a type that extends it... or a type that implements it - when the

specified type is the name of a specific interface).

10/31/15 © Haim Michael 2009. All Rights Reserved. 66

Type Hinting

<?php

class Line
{

var $p1, $p2;
function Line(Point $ob_1, Point $ob_2)
{

$this->setP1($ob_1);
$this->setP2($ob_2);

}

function setP1(Point $ob)
{

$this->p1 = $ob;
}

function setP2(Point $ob)
{

$this->p2 = $ob;
}

10/31/15 © Haim Michael 2009. All Rights Reserved. 67

Type Hinting

function length()
{

return sqrt(pow($this->p1->y-$this->p2->y,2)
+pow($this->p1->x-$this->p2->x,2));

}
}

class Point
{

var $x,$y;
function Point($x_val,$y_val)
{

$this->x = $x_val;
$this->y = $y_val;

}
}

$line_1 = new Line(new Point(3,3),new Point(7,6));
echo $line_1->length();
?>

10/31/15 © Haim Michael 2009. All Rights Reserved. 68

Type Hinting

 It is also possible to specify that a specific parameter must

be of an array type.

 Doing so, when passing a value to that parameter the value

must be a valid array.

10/31/15 © Haim Michael 2009. All Rights Reserved. 69

Type Hinting
<?php
class Line
{

var $p1, $p2;
function Line(array $vec)
{

$this->setP1(new Point($vec[0],$vec[1]));
$this->setP2(new Point($vec[2],$vec[3]));

}
function setP1(Point $ob)
{

$this->p1 = $ob;
}
function setP2(Point $ob)
{

$this->p2 = $ob;
}
function length()
{

return sqrt(pow($this->p1->y-$this->p2->y,2)
+pow($this->p1->x-$this->p2->x,2));

}
}

10/31/15 © Haim Michael 2009. All Rights Reserved. 70

Type Hinting

class Point
{
 var $x,$y;

function Point($x_val,$y_val)
{

$this->x = $x_val;
$this->y = $y_val;

}
}

$line_1 = new Line(array(3,3,7,6));
echo $line_1->length();
?>

10/31/15 © Haim Michael 2009. All Rights Reserved. 71

Traits

 Defining a trait is very similar to defining a class. Instead of

using the keyword class we use the keyword trait.

 The purpose of traits is to group functionality in a fine

grained and consistent way.

 It is not possible to instantiate a trait. The trait servers as an

additional capability that provides us with additional

capabilities when using inheritance in our code.

10/31/15 © Haim Michael 2009. All Rights Reserved. 72

Traits

 The trait provides us with an horizontal composition of

behavior.

 In order to use a trait we should place the use keyword

within the body of our class.

10/31/15 © Haim Michael 2009. All Rights Reserved. 73

Traits

<?php
trait Academic
{
 function think()
 {
 echo "i m thinking!";
 }
}

http://youtu.be/wfoFORmxteQ

10/31/15 © Haim Michael 2009. All Rights Reserved. 74

Traits

class Person
{
 private $id;
 private $name;
 function __construct($idValue,$nameValue)
 {
 $this->id = $idValue;
 $this->name = $nameValue;
 }
 function __toString()
 {
 return "id=".$this->id." name=".$this->name;
 }
}

10/31/15 © Haim Michael 2009. All Rights Reserved. 75

Traits
class Student extends Person
{
 use Academic;
 private $avg;
 function __construct($idVal,$nameVal,$avgVal)
 {
 parent::__construct($idVal,$nameVal);
 $this->avg = $avgVal;
 }
 function __toString()
 {
 $str = parent::__toString();
 return "avg=".$this->avg.$str;
 }
}

10/31/15 © Haim Michael 2009. All Rights Reserved. 76

Traits

class Lecturer extends Person
{

 private $degree;
 function __construct($idVal,$nameVal,$degreeVal)
 {
 parent::__construct($idVal,$nameVal);
 $this->degree = $degreeVal;
 }
 function __toString()
 {
 $str = parent::__toString();
 return "degree=".$this->degree.$str;
 }
 use Academic;
}

10/31/15 © Haim Michael 2009. All Rights Reserved. 77

Traits

$student = new Student(123123,"mosh",98);
$lecturer = new Lecturer(42343,"dan","mba");

$student->think();
echo "<hr/>";
$lecturer->think();

?>

10/31/15 © Haim Michael 2009. All Rights Reserved. 78

Traits

10/31/15 © Haim Michael 2009. All Rights Reserved. 79

Traits Precedence

 Methods of the current class override methods we inserted

using the trait.

10/31/15 © Haim Michael 2009. All Rights Reserved. 80

Traits Precedence

<?php
trait Gamer
{
 function play()
 {
 echo "<h1>gaga</h1>";
 }
}

class Person
{
 use Gamer;
 function play()
 {
 echo "<h1>papa</h1>";
 }
}

$ob = new Person();
$ob->play();

10/31/15 © Haim Michael 2009. All Rights Reserved. 81

Traits Precedence

10/31/15 © Haim Michael 2009. All Rights Reserved. 82

Traits Precedence

 Methods inserted by the trait override methods inherited

from a base class.

10/31/15 © Haim Michael 2009. All Rights Reserved. 83

Traits Precedence

<?php
trait Gamer
{
 function play()
 {
 echo "<h1>gaga</h1>";
 }
}

class Person
{
 function play()
 {
 echo "<h1>papa</h1>";
 }
}

10/31/15 © Haim Michael 2009. All Rights Reserved. 84

Traits Precedence

class Student extends Person
{
 use Gamer;
}

$ob = new Student();
$ob->play();

10/31/15 © Haim Michael 2009. All Rights Reserved. 85

Traits Precedence

10/31/15 © Haim Michael 2009. All Rights Reserved. 86

Traits Precedence

10/31/15 © Haim Michael 2009. All Rights Reserved. 87

Multiple Traits

 We can insert multiple traits into our class by listing them in

the use statement separated by commas.

10/31/15 © Haim Michael 2009. All Rights Reserved. 88

Multiple Traits

<?php
trait Gamer
{
 function play()
 {
 echo "<h1>play</h1>";
 }
}

trait Painter
{
 function paint()
 {
 echo "<h1>paint</h1>";
 }
}

10/31/15 © Haim Michael 2009. All Rights Reserved. 89

Multiple Traits

class Person
{
 use Painter,Gamer;
}

$ob = new Person();
$ob->play();
$ob->paint();

?>

10/31/15 © Haim Michael 2009. All Rights Reserved. 90

Multiple Traits

10/31/15 © Haim Michael 2009. All Rights Reserved. 91

Traits Conflicts

 If two traits (or more) insert two methods with the same

name then a fatal error is produced.

 We can use the insteadof operator in order to choose the

exact method we want to use.

 We can use the as operator in order to include a conflicting

method under another name.

10/31/15 © Haim Michael 2009. All Rights Reserved. 92

Traits Conflicts

<?php
trait Player
{
 function play()
 {
 echo "<h1>whoo-a</h1>";
 }
 function printdetails()
 {
 echo "<h1>player...</h1>";
 }
}

10/31/15 © Haim Michael 2009. All Rights Reserved. 93

Traits Conflicts
trait Gamer
{
 function play()
 {
 echo "<h1>shoooo</h1>";
 }
 function printdetails()
 {
 echo "<h1>gamer...</h1>";
 }
}

class Person
{
 use Gamer, Player
 {
 Gamer::printdetails insteadof Player;
 Player::play insteadof Gamer;
 Gamer::play as xplay;
 }
}

10/31/15 © Haim Michael 2009. All Rights Reserved. 94

Traits Conflicts

$ob = new Person();
$ob->xplay();
$ob->play();
$ob->printdetails();

?>

10/31/15 © Haim Michael 2009. All Rights Reserved. 95

Traits Conflicts

10/31/15 © Haim Michael 2009. All Rights Reserved. 96

Changing Trait's Method Visibility

 We can change the visibility of a method a trait inserts into our

class. We do it using the as operator.

use [trait name] {[method name] as [visibility];}

10/31/15 © Haim Michael 2009. All Rights Reserved. 97

Changing Trait's Method Visibility

<?php
trait Academic
{
 function think()
 {
 echo "i m thinking!";
 }
}

class Person
{
 use Academic {think as protected;}
 private $id;
 private $name;

10/31/15 © Haim Michael 2009. All Rights Reserved. 98

Changing Trait's Method Visibility

 function __construct($idValue,$nameValue)
 {
 $this->id = $idValue;
 $this->name = $nameValue;
 }
 function __toString()
 {
 return "id=".$this->id." name=".$this->name;
 }
 function xthink()
 {
 //do something here
 $this->think();
 }
}

$ob = new Person(123123,"mosh");
$ob->xthink();
?>

10/31/15 © Haim Michael 2009. All Rights Reserved. 99

Changing Trait's Method Visibility

10/31/15 © Haim Michael 2009. All Rights Reserved. 100

Traits Composed of Other Traits

 We can define a trait composed of others. Doing so we can

put together separated traits into one.

10/31/15 © Haim Michael 2009. All Rights Reserved. 101

Traits Composed of Other Traits

<?php
trait Gamer
{
 function play()
 {
 echo "play...";
 }
}

trait Gambler
{
 function gamble()
 {
 echo "gamble...";
 }
}

10/31/15 © Haim Michael 2009. All Rights Reserved. 102

Traits Composed of Other Traits

trait GamblingGamer
{
 use Gambler, Gamer;
}

class User
{
 use GamblingGamer;
}

$ob = new User();
$ob->gamble();
$ob->play();
?>

10/31/15 © Haim Michael 2009. All Rights Reserved. 103

Traits Composed of Other Traits

10/31/15 © Haim Michael 2009. All Rights Reserved. 104

Using Class Variables & Methods

 The code in our trait can access variables and methods that

were defined in the class that uses our trait.

10/31/15 © Haim Michael 2009. All Rights Reserved. 105

Using Class Variables & Methods

<?php
trait A
{
 function doSomething()
 {
 echo $this->num;
 }
}

class Something
{
 var $num = 2;
 use A;
}

$ob = new Something();
$ob->doSomething();
?>

http://youtu.be/cX9cG520QfE

10/31/15 © Haim Michael 2009. All Rights Reserved. 106

Using Class Variables & Methods

10/31/15 © Haim Michael 2009. All Rights Reserved. 107

Trait with Abstract Members

 We can define a trait that includes the definition for abstract

methods.

 Doing so, we can use the trait to impose requirements upon

the classes that uses our trait.

10/31/15 © Haim Michael 2009. All Rights Reserved. 108

Trait with Abstract Members

<?php
trait Learner
{
 abstract function learn();
}

class Student
{
 use Learner;
 function learn()
 {
 echo "i learn...";
 }
}

$ob = new Student();
$ob->learn();

?>

10/31/15 © Haim Michael 2009. All Rights Reserved. 109

Trait with Abstract Members

10/31/15 © Haim Michael 2009. All Rights Reserved. 110

Trait with Static Method

 It is possible to define a static method within our trait. Doing

so, it will be possible to call that static method from

anywhere in our code.

10/31/15 © Haim Michael 2009. All Rights Reserved. 111

Trait with Static Method

<?php
trait Learner
{
 static function anounce_learning()
 {
 echo "quite please. we learn.";
 }
}

Learner::anounce_learning();
?>

10/31/15 © Haim Michael 2009. All Rights Reserved. 112

Trait with Static Method

10/31/15 © Haim Michael 2009. All Rights Reserved. 113

Trait with Static Variable

 It is possible to define a static variable within our trait. Doing

so, it will be possible to refer that static variable from

anywhere in our code.

10/31/15 © Haim Michael 2009. All Rights Reserved. 114

Trait with Static Variable

<?php
trait Learner
{
 static $str = "quite please. we learn.";
}

echo Learner::$str;
?>

10/31/15 © Haim Michael 2009. All Rights Reserved. 115

Trait with Static Variable

10/31/15 © Haim Michael 2009. All Rights Reserved. 116

Trait with Properties

 It is possible to define our trait with properties. When

instantiating a class that uses our trait we will be able to

refer those properties in the new created object.

 If the class that uses our trait includes the definition for a

property with the same name we will get an error.

10/31/15 © Haim Michael 2009. All Rights Reserved. 117

Trait with Properties

<?php
trait Teacher
{
 var $subject;
}

class Lecturer
{
 use Teacher;
}

$ob = new Lecturer();
$ob->subject = "math";
echo $ob->subject;
?>

10/31/15 © Haim Michael 2009. All Rights Reserved. 118

Trait with Properties

10/31/15 © Haim Michael 2009. All Rights Reserved. 119

Members Access on Instantiation

 PHP 5.4 allows us to access class members on the object

instantiation. It is useful in those cases when we need to

access a single member of an object and don't need the

object.

10/31/15 © Haim Michael 2009. All Rights Reserved. 120

Members Access on Instantiation

<?
class Utils
{
 function calc($numA,$numB)
 {
 return $numA+$numB;
 }
}

$temp = (new Utils)->calc(3,4);

echo $temp;

?>

http://youtu.be/RL0Kk2eAmOA

10/31/15 © Haim Michael 2009. All Rights Reserved. 121

Members Access on Instantiation

<?
class Utils
{
 function calc($numA,$numB)
 {
 return $numA+$numB;
 }
}

$temp = (new Utils)->calc(3,4);

echo $temp;

?>

http://youtu.be/RL0Kk2eAmOA

10/31/15 © Haim Michael 2009. All Rights Reserved. 122

Members Access on Instantiation

10/31/15 © Haim Michael 2009. All Rights Reserved. 123

The Class::{expr}() Syntax

 PHP 5.4 allows us to call a static function defined within a

class using the following unique syntax:

[class name]::{[function name]()

10/31/15 © Haim Michael 2009. All Rights Reserved. 124

The Class::{expr}() Syntax

<?
class GoGo
{
 public static function do_something()
 {
 echo "something!!!";
 }
}

GoGo::{'do_something'}()

?>

http://youtu.be/BT_tLBN3C48

10/31/15 © Haim Michael 2009. All Rights Reserved. 125

The Class::{expr}() Syntax

10/31/15 © Haim Michael 2009. All Rights Reserved. 126

The __get() Magic Function

 When trying to get a value of a variable that doesn't exist the

__get() magic function will be invoked. The name of the

variable we try to access will be passed over to this magic

function.

10/31/15 © Haim Michael 2009. All Rights Reserved. 127

The __set() Magic Function

 When trying to assign a value to a variable that doesn't exist

the __set() magic function will be invoked. The name of

the variable will be passed over as the first argument. The

value will be passed over as the second argument.

10/31/15 © Haim Michael 2009. All Rights Reserved. 128

Sample
<?
class Bongo
{
 var $vec;
 function __construct()
 {
 $this->vec = array();
 }
 function __get($str)
 {
 return $this->vec[$str];
 }
 function __set($var_name,$var_value)
 {
 $this->vec[$var_name] = $var_value;
 }
}

$ob = new Bongo();
$ob->name="balaboa";
$ob->id=12123123;
echo $ob->name." ".$ob->id;
?>

http://youtu.be/2Cc2XJVy0w4

10/31/15 © Haim Michael 2009. All Rights Reserved. 129

Sample

10/31/15 © Haim Michael 2009. All Rights Reserved. 130

The __PHP_Incomplete_Class Object

 When storing an object in $_SESSION trying to retrieve it in

another page we will get an error if the class itself is not

available when the session_start() function builds the

$_SESSION array.

 In order to avoid this problem we better make sure that the

class definition is available before we call the

session_start() function.

10/31/15 © Haim Michael 2009. All Rights Reserved. 131

The __PHP_Incomplete_Class Object

 Similar scenarios include calling the unserialize()

function while the class definition is not available.

http://www.youtube.com/watch?v=rs7qUJEY3Ag

10/31/15 © Haim Michael 2009. All Rights Reserved. 132

The __debugInfo() Magic Function

 The __debugInfo() magic function was introduced in

PHP 5.6. It allows us to specify which properties will be

presented together with their values when passing over an

object to the var_dump() function.

10/31/15 © Haim Michael 2009. All Rights Reserved. 133

The __debugInfo() Magic Function

<?php
class Something
{
 private $name;
 public function __construct($str)
 {
 $this->name = $str;
 }
 public function __debugInfo()
 {
 return [
 'length of name' => strlen($this->name),
 'name starts with' => substr($this->name,0,1)
];
 }
}

$ob = new Something("james");
var_dump($ob);
?>

https://www.youtube.com/watch?v=x1yfBD62Siw&list=PL6B5A743B305A1217

10/31/15 © Haim Michael 2009. All Rights Reserved. 134

The __debugInfo() Magic Function

10/31/15 © Haim Michael 2011. All Rights Reserved. 135

Anonymous Class

 As of PHP 7, we can define an anonymous class. It is

highly useful when in a need for one object only.

 The new anonymous class can extend another class and

implements as many interfaces as we want.

 When defining an anonymous class within the scope of

another class we won't get any access to any of the

private or protected properties of the outer class.

10/31/15 © Haim Michael 2011. All Rights Reserved. 136

Anonymous Class

<?php
class C {
 public function doSomething() {
 echo "<h1>something</h1>";
 }
}
interface I {}
trait T {}
$ob = new class(10) extends C implements I {
 private $num;
 public function __construct($num)
 {
 $this->num = $num;
 }
 use T;
};
$ob->doSomething();
?>

https://youtu.be/PscyWU3b8uI

10/31/15 © Haim Michael 2011. All Rights Reserved. 137

Anonymous Class

10/31/15 © Haim Michael 2011. All Rights Reserved. 138

The Filtered unserialize() Function

 When we unserialize an object, as of PHP 7 we can

specify the names of the classes that can be

unserialized.

 Specifying the names of the classes that can be

unserialized improves the security of our code. When

unserializing untrusted data using this function we

prevent possible code injections.

10/31/15 © Haim Michael 2011. All Rights Reserved. 139

The Filtered unserialize() Function

<?php
class A {
 private $magic;
 function __construct($number) {
 $this->setMagic($number);
 }
 function setMagic($number) {
 if($number>0) {
 $this->magic = $number;
 }
 }
 function getMagic() {
 return $this->magic;
 }
}

https://youtu.be/-62OnS0TGIM

10/31/15 © Haim Michael 2011. All Rights Reserved. 140

The Filtered unserialize() Function

$ob1 = new A(5);
$data = serialize($ob1);
$ob2 = unserialize(

$data,
["allowed_classes" => ["A", "Rectangle"]]);

echo $ob2->getMagic();

?>

10/31/15 © Haim Michael 2011. All Rights Reserved. 141

The Filtered unserialize() Function

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139
	Slide 140
	Slide 141

