
Object Oriented Programming



10/31/15 © Haim Michael 2009. All Rights Reserved. 2

Introduction

 PHP support for object oriented programming (OOP) is one

of the major changes introduced by PHP 5. 
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Declaring a Class

 The basic syntax used when declaring a class is:
     

class [class name]

{

...

}

Example:
  

class Rectangle

{

...

}
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Class Instantiation

 Instantiating a class is done by using the new construct.
 

$var = new [class name]();

Example:
  

$myRectangle = new Rectangle();
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Object by Reference

Starting with PHP 5, an object is always treated using its

reference rather than its value.
Example:

$rec1 = new Rectangle();

$rec2 = $rec1;

Both $rec1 and $rec2 point to the same object. Both $rec1 and $rec2 hold the

same reference for the same object. 
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The '->' Operator

Calling a method on a specific object is done using the '->'

operator. 

class Xyz 

{

function foo() { echo “xyz”; } 

}

$xyz = new Xyz();

$xyz -> foo();
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The '->' Operator

Calling a method from within another method (on the same

object) should be done using '$this'. Unlike Java, C++ and

C# PHP doesn't allow calling another method without using

the '$this' keyword. 
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The '->' Operator

Accessing a variable within an object is done using the '->'

operator. 

class Xyz 

{

var $num;

}

$xyz = new Xyz();

$xyz -> num = 9;
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Constructor

A constructor is a special function called when the class is

instantiated. 

The constructor name should be either __construct or a

name identical to the name of the class. 
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Constructor
  

<?php

class Rectangle

{

var $width;

 var $height;

function Rectangle($numA,$numB)

{

$this->width=$numA;

$this->height=$numB;

}

function area() { return $this->width*$this->height; }

}
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Constructor
  

$ob = new Rectangle(5,2)

echo $ob->area();

?>
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Destructor

The destructor is a special function called when the object

ends its life. 

We can place within the destructor commands to free

resources the object used. 

The destructor name must be __destruct. 
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Destructor
  

<?php

class Rectangle

{

var $width;

 var $height;

function __destruct()

{

...

}

}

?>
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The $this Keyword

Within the scope of every method we can refer the current

object using $this. 

Trying to access object's variables should be done using the

$this keyword and the arrow -> operator. When doing so

there is no need to specify $ before the variable name.
...

function setWidth($val)

{

 $this->width = $val;

}

...
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The Scope

 PHP 5 allows us defining each one of the class variables

and each one of the class functions with a scope:
   

public ...can be accessed from any scope (default).

protected  ...can be accessed from within the class and its descendants.

private  ...can be accessed from within the class only.
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The Scope

<?php

class Rectangle

{

private $width;

private $height;

function __construct($wval, $hval)

{

$this->set_width($wval);

$this->set_height($hval;

}

function area()

{

return $this->width*$this->height;

}
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The Scope

function set_width($val)

{

if($val>0)

{

$this->width = $val;

}

}

function set_height($val)

{

if($val>0)

{

$this->height = $val;

}

}
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The Scope

function details()

{

echo "width=";

echo $this->width;

echo "<BR>";

echo "height=";

echo $this->height;

echo "<BR>";

echo "area=";

echo $this->area();

}

}

$rec = new Rectangle(5,3);

$rec->details();

?>
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Inheritance

Declaring a class that extends another is done using the

extends construct.
  

class Aaa

{

...

}

class Bbb extends Aaa

{

...

}
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Overriding Methods

Declaring a class extending another allows adding new

method and new properties as well as declaring methods

that already exist (overriding). 
   

class Aaa 

{

function doSomething() {echo “Aaa something”;}

}
  

class Bbb extends Aaa

{

function doSomething() {echo “Bbb something”;}

}
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Overriding Methods

<?php
class Aaa
{

function doSomething() 
{

echo "a something";
}

}
class Bbb extends Aaa
{

function doSomething()
{

echo "b something";         
       }

}
$ob_b = new Bbb();
$ob_b->doSomething();

?>
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The 'parent::' Construct

Using the 'parent::' construct it is possible to access the parent

class' method version.
   

class Aaa 

{

function doSomething() {echo “Aaa something”;}

}
  

class Bbb extends Aaa

{

function doSomething() {parent::doSomething(); echo “Bbb”;}

}
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The 'parent::' Construct

<?php
class Aaa
{

function doSomething() 
{

echo "a something";
}

}
class Bbb extends Aaa
{

function doSomething()
{

parent::doSomething();         
       }

}
$ob_b = new Bbb();
$ob_b->doSomething();

?>
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The 'final' Keyword

 Adding 'final' to our class definition will ensure that we

won't be able to extend that class.

 Adding 'final' to our method definition will ensure that we

won't be able to override that method.
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The 'final' Keyword

<?php
class Person
{

private $name;
private $id;

function Person($name_val,$id_val)
{

$this->name = $name_val;
$this->$id = $id_val;

}

final function set_id($val)
{

if($val>0 && $val<1000)
{

$this->id = $val;
}

}
}
?>
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The 'final' Keyword

<?php
final class Person
{

private $name;
private $id;

function Person($name_val,$id_val)
{

$this->name = $name_val;
$this->id = $id_val;

}

function set_id($val)
{

if($val>0 && $val<1000)
{

$this->id = $val;
}

}
}
?>
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Properties Initialization

 When defining a class property (variable) it is possible to

initialize it with a value. 

 That value can not be an expression.
   

class Circle

{

var $radius = 8;

function details()

{

echo “radius=”;

echo $this->radius;

}

}
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Static Methods & Static Properties

 Adding the 'static' keyword to our method / variable

definition will turn it into a static one.

 Static method doesn't work on a specific object.

 Static variable is not duplicated for each one of the

instantiated objects.

 Calling a static method should be done by writing the class

name following “::” preceding the static method we call.
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Static Methods & Static Properties

<?php
class Utils
{

static $interest = 5.4;
static function sum($a,$b)
{

return $a+$b;
}
static function multiply($a,$b)
{

return $a*$b;
}

}
echo Utils::sum(4,5);
echo "<BR>";
echo Utils::multiply(4,5);
echo "<BR>";
echo Utils::$interest;
?>

http://www.youtube.com/watch?v=DpbSAtAxMdY
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Static Methods & Static Properties
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Class Constants

 Class constants are constants (as any other constant)

except for the fact they are scoped within a class. 
  

class [class name]

{

const [constant name] = [constant value];

}
   

class Something

{

const SCHOOL_NAME = “De Shalit”;

}
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Class Constants

 Accessing a class constant is done by writing the class

name + “::” preceding the constant name. 
  

echo [class name]::[constant name];
   

echo Something::SCHOOL_NAME;
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Abstract Class

 Adding the 'abstract' keyword to the class definition and

include within that class the definition for one (or more)

abstract methods will turn that class into an abstract one. 

 An abstract method is a method with the 'abstract'

keyword in its declaration and without a body.

 It is impossible to instantiate an abstract class. There is a

need to extend it and override each one of the abstract

methods in order to be able to instantiate the new class.
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Abstract Class

 When we define an abstract method we cannot use the

private access modifier. It is impossible to define a private

abstract method.  



10/31/15 © Haim Michael 2009. All Rights Reserved. 35

Abstract Class

<?php

abstract class Shape
{
 abstract function area();
}

class Rectangle extends Shape
{
 private $width;
 private $height;
 public function __construct($wval,$hval)

{
 $this->width = $wval;

 $this->height = $hval;
}
public function area()
{

 return $this->width * $this->height;
}

}

http://www.youtube.com/watch?v=-JcnERLDS_8
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Abstract Class
class Circle extends Shape
{
 private $radius;
 public function __construct($num)
 {
 $this->radius = $num;
 }
 public function area()
 {
 return $this->radius * $this->radius * 3.14;

}
}

$rec = new Rectangle(5,2);
echo $rec->area();
echo "<BR>";

$circ = new Circle(4);
echo $circ->area();
echo "<BR>";

?>
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Abstract Class
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Interface
 We use the 'interface' keyword in order to define an

interface. Similarly to defining a class. The differences are: 

1. Instead of using the 'class' keyword we use 'interface'.

2. Within the interface we can define abstract methods only. 

3. Within the interface we cannot define neither a constructor or a destructor. 

 We can define a class and mention that it implements an

interface. To do so, we use the 'implements' keyword.

 Interfaces can be used to abstract the behavior of an

expected component. 
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Interface
 Unlike a class that can extend one other class only, it is

possible to define a class that implements more than one

interface. We should write the names of each one of the

interfaces separated with a commas. 

  

class Something implements Driveable, Cloneable, Printable

{

.

.

.

}
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Interface

interface Printable
{

function print_details();
}

class Rectangle implements Printable
{

private $width;
private $height;
public function Rectangle($w_val,$h_val)
{

$this->width = $w_val;
$this->height = $h_val;

}
public function print_details()
{

echo "rectangle... width=".$this->width." height=".$this->height;
}

}
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Interface

class Person implements Printable
{

private $name;
private $id;
public function Person($n_val,$id_val)
{

$this->name = $n_val;
$this->id = $id_val;

}
public function print_details()
{

echo "person... name=$this->name id=$this->id";
}

}
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Interface

class Car implements Printable
{

private $name;
private $id;
public function Car($n_val,$id_val)
{

$this->name = $n_val;
$this->id = $id_val;

}
public function print_details()
{

echo "car... name=$this->name id=$this->id";
}

}
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Interface

$vec = array();
$vec[0] = new Car("Toyota",233423);
$vec[1] = new Car("Ford",2435434);
$vec[2] = new Rectangle(8,4);
$vec[3] = new Rectangle(10,8);
$vec[4] = new Person("John",46354);
$vec[5] = new Person("Moshe",463445);

foreach($vec as $ob)
{

$ob->print_details();
echo "<br>";

}
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The 'instanceof' Operator

 Using the 'instanceof' operator it is possible to determine

whether a given object is an instance of a specific class or

of a class that implements a specific interface. 

if([object variable] instanceof [class or interface name])

{

...

}
The value of this boolean expression is true if one of the following is true:
(1) The object was instantiated from a class that implements the specified interface.
(2) The object was instantiated from the specified class.
(3) The object was instantiated from a class that extends the specified class
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Objects Serialization

 Similarly to Java, PHP allows us to serialize objects into a

storable representation. 

We can later store it into a file or send it over the network to another application.

 The serialize function receives an object and returns its

storable representation.
...

$ob = new Car();

$ob_ser = serialize($ob);

...
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Objects Serialization

 The unserialize function can receives a storable

representation of a given object and creates a new object

based on it.
... 

$another_ob = unserialize($ob_ser); 

... 
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Objects Serialization

 It is possible to change the default behavior of the serialize

function by defining the __sleep and the __wakeup magic

functions within the class from which the objects were

instantiated. 

 The __sleep function should return an array that its values

are the names of the object's variables we want to include in

its storeable representation. 
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Objects Serialization

 The __wakeup function should include the code we want to

be executed when a new object is created based on a

storable representation. 
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Objects Serialization
<?php

class Trip
{

private $id;
private $name;
private $participants;
private $trip_time;

...

public function __sleep()
{

 return array('id','name');
}

public function __wakeup()
{

 $this->trip_time = date("F j, Y, g:i a");
}

}
?>



10/31/15 © Haim Michael 2009. All Rights Reserved. 50

The __toString Function

 Defining the __toString method within our class we can

set the behavior when objects instantiated from our class

are converted to string.

 The __toString should return a string. That string will be

the outcome when converting an object into a string. 
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The __toString Function

<?php
class Person
{
 private $id;
 private $name;
 function Person($name_val,$id_val)

{
$this->id = $id_val;
$this->name = $name_val;

}
function __toString()
{

$id_var = $this->id;
$name_var = $this->name;
return "## ".$id_var." ".$name_var." ##";

}
}

$ob = new Person("David",123123);
echo $ob;
?>
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The __invoke Function

 Defining __invoke within our class we can set the behavior

when trying to call an object as if it was a function.
This magic function is available since PHP 5.3.0. 
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The __invoke Function

<?php
class Student
{

private $id;
private $name;
private $average;
function Student($name_val,$id_val,$average_val)
{

$this->id = $id_val;
$this->name = $name_val;
$this->average = $average_val;

}
function __toString()
{

$id_var = $this->id;
$average_var = $this->average;
return "## ".$id_var." ".$average_var." ##";

}
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The __invoke Function

function __invoke($var)
{

$this->average=$var;
}

}

$ob = new Student("David",123123,94);
$ob(100);
echo $ob;
?>



10/31/15 © Haim Michael 2009. All Rights Reserved. 55

The __invoke Function

 We can use the __invoke magic method as if we were

using delegates in C#. 

http://www.youtube.com/watch?v=u5Goep_BUYg
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The __invoke Function

<?php
class Account
{

private $id;
private $balance;
function __construct($idVal,$balanceVal)
{

$this->setId($idVal);
$this->setBalance($balanceVal);

}
function setId($num)
{

if($num>0)
{

$this->id = $num;
}

}
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The __invoke Function

function setBalance($sum)
{

$this->balance = $sum;
}
function deposit($sum)
{

$this->balance += $sum;
}
function __invoke($sum)
{

$this->deposit($sum);
}
function __toString()
{

return "[id=$this->id balance=$this->balance]";
}

}
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The __invoke Function

<?php
class Utils
{

static function transfer($sum,$from,$to)
{

$from(-$sum);
$to($sum);

}
}
?>
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The __invoke Function

<?php
include "Account.php";
include "Utils.php";
$accountA = new Account(1,200);
$accountB = new Account(2,300);
//echo "<br>$accountA";
//$accountA(33);
//echo "<br>$accountA";
echo "<br>$accountA  $accountB";
Utils::transfer(50,$accountA,$accountB);
echo "<br>$accountA  $accountB";
?>
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The __invoke Function
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The __autoload Function

 Defining the __autoload function we can specify the code

we want to execute when a required class is loaded into the

memory. 
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The __autoload Function

<?php

function __autoload($classname)
{

echo "inside __autoload<p>";
include $classname.".php";

}

$ob = new Student("mosh");
echo "just text<p>";
echo $ob;

?> 

demo.php

http://www.youtube.com/watch?v=tEkjQAM24Iw
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The __autoload Function

<?php
class Student
{

var $firstname;
function __construct($str)
{

$this->firstname = $str;
}
function __toString()
{

return $this->firstname;
}

}
?>

Student.php
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The __autoload Function
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Type Hinting

 When defining a function we can force its parameters to be

of a specific class type. 

 We do it by defining the parameters preceding with a

specific name of a class or an interface. 
When passing a value to such parameter it must be a reference for object of the

specified type (or a type that extends it... or a type that implements it - when the

specified type is the name of a specific interface). 
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Type Hinting

<?php

class Line
{

var $p1, $p2;
function Line(Point $ob_1, Point $ob_2)
{

$this->setP1($ob_1);
$this->setP2($ob_2);

}

function setP1(Point $ob)
{

$this->p1 = $ob;
}

function setP2(Point $ob)
{

$this->p2 = $ob;
}
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Type Hinting

function length()
{

return sqrt(pow($this->p1->y-$this->p2->y,2)
+pow($this->p1->x-$this->p2->x,2));

}
}

class Point
{

var $x,$y;
function Point($x_val,$y_val)
{

$this->x = $x_val;
$this->y = $y_val;

}
}

$line_1 = new Line(new Point(3,3),new Point(7,6));
echo $line_1->length();
?>
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Type Hinting

 It is also possible to specify that a specific parameter must

be of an array type. 

 Doing so, when passing a value to that parameter the value

must be a valid array.
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Type Hinting
<?php
class Line
{

var $p1, $p2;
function Line(array $vec)
{

$this->setP1(new Point($vec[0],$vec[1]));
$this->setP2(new Point($vec[2],$vec[3]));

}
function setP1(Point $ob)
{

$this->p1 = $ob;
}
function setP2(Point $ob)
{

$this->p2 = $ob;
}
function length()
{

return sqrt(pow($this->p1->y-$this->p2->y,2)
+pow($this->p1->x-$this->p2->x,2));

}
}
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Type Hinting

class Point
{
 var $x,$y;

function Point($x_val,$y_val)
{

$this->x = $x_val;
$this->y = $y_val;

}
}

$line_1 = new Line(array(3,3,7,6));
echo $line_1->length();
?>
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Traits

 Defining a trait is very similar to defining a class. Instead of

using the keyword class we use the keyword trait. 

 The purpose of traits is to group functionality in a fine

grained and consistent way.

 It is not possible to instantiate a trait. The trait servers as an

additional capability that provides us with additional

capabilities when using inheritance in our code. 
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Traits

 The trait provides us with an horizontal composition of

behavior. 

 In order to use a trait we should place the use keyword

within the body of our class.  
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Traits

<?php
trait Academic
{
    function think()
    {
        echo "i m thinking!";
    }
}

http://youtu.be/wfoFORmxteQ
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Traits

class Person
{
    private $id;
    private $name;
    function __construct($idValue,$nameValue)
    {
        $this->id = $idValue;
        $this->name = $nameValue;
    }
    function __toString()
    {
        return "id=".$this->id." name=".$this->name;
    }
}
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Traits
class Student extends Person
{
    use Academic;
    private $avg;
    function __construct($idVal,$nameVal,$avgVal)
    {
        parent::__construct($idVal,$nameVal);
        $this->avg = $avgVal;
    }
    function __toString()
    {
        $str = parent::__toString();
        return "avg=".$this->avg.$str;
    }
}
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Traits

class Lecturer extends Person
{

    private $degree;
    function __construct($idVal,$nameVal,$degreeVal)
    {
        parent::__construct($idVal,$nameVal);
        $this->degree = $degreeVal;
    }
    function __toString()
    {
        $str = parent::__toString();
        return "degree=".$this->degree.$str;
    }
    use Academic;
}
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Traits

$student = new Student(123123,"mosh",98);
$lecturer = new Lecturer(42343,"dan","mba");

$student->think();
echo "<hr/>";
$lecturer->think();

?>
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Traits
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Traits Precedence

 Methods of the current class override methods we inserted

using the trait. 
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Traits Precedence

<?php
trait Gamer
{
    function play()
    {
        echo "<h1>gaga</h1>";
    }
}

class Person
{
    use Gamer;
    function play()
    {
        echo "<h1>papa</h1>";
    }
}

$ob = new Person();
$ob->play();
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Traits Precedence
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Traits Precedence

 Methods inserted by the trait override methods inherited

from a base class.
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Traits Precedence

<?php
trait Gamer
{
    function play()
    {
        echo "<h1>gaga</h1>";
    }
}

class Person
{
    function play()
    {
        echo "<h1>papa</h1>";
    }
}
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Traits Precedence

class Student extends Person
{
    use Gamer;
}

$ob = new Student();
$ob->play();
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Traits Precedence



10/31/15 © Haim Michael 2009. All Rights Reserved. 86

Traits Precedence
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Multiple Traits

 We can insert multiple traits into our class by listing them in

the use statement separated by commas. 
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Multiple Traits

<?php
trait Gamer
{
    function play()
    {
        echo "<h1>play</h1>";
    }
}

trait Painter
{
    function paint()
    {
        echo "<h1>paint</h1>";
    }
}
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Multiple Traits

class Person
{
    use Painter,Gamer;
}

$ob = new Person();
$ob->play();
$ob->paint();

?>
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Multiple Traits
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Traits Conflicts

 If two traits (or more) insert two methods with the same

name then a fatal error is produced. 

 We can use the insteadof operator in order to choose the

exact method we want to use. 

 We can use the as operator in order to include a conflicting

method under another name. 
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Traits Conflicts

<?php
trait Player
{
    function play()
    {
        echo "<h1>whoo-a</h1>";
    }
    function printdetails()
    {
        echo "<h1>player...</h1>";
    }
}
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Traits Conflicts
trait Gamer
{
    function play()
    {
        echo "<h1>shoooo</h1>";
    }
    function printdetails()
    {
        echo "<h1>gamer...</h1>";
    }
}

class Person
{
    use Gamer, Player
    {
        Gamer::printdetails insteadof Player;
        Player::play insteadof Gamer;
        Gamer::play as xplay;
    }
}
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Traits Conflicts

$ob = new Person();
$ob->xplay();
$ob->play();
$ob->printdetails();

?>
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Traits Conflicts
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Changing Trait's Method Visibility

 We can change the visibility of a method a trait inserts into our

class. We do it using the as operator. 
  

use [trait name] {[method name] as [visibility];}
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Changing Trait's Method Visibility

<?php
trait Academic
{
    function think()
    {
        echo "i m thinking!";
    }
}

class Person
{
    use Academic {think as protected;}
    private $id;
    private $name;
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Changing Trait's Method Visibility

    function __construct($idValue,$nameValue)
    {
        $this->id = $idValue;
        $this->name = $nameValue;
    }
    function __toString()
    {
        return "id=".$this->id." name=".$this->name;
    }
    function xthink()
    {
        //do something here
        $this->think();
    }
}

$ob = new Person(123123,"mosh");
$ob->xthink();
?>
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Changing Trait's Method Visibility
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Traits Composed of Other Traits

 We can define a trait composed of others. Doing so we can

put together separated traits into one.
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Traits Composed of Other Traits

<?php
trait Gamer
{
    function play()
    {
        echo "play...";
    }
}

trait Gambler
{
    function gamble()
    {
        echo "gamble...";
    }
}
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Traits Composed of Other Traits

trait GamblingGamer
{
    use Gambler, Gamer;
}

class User
{
    use GamblingGamer;
}

$ob = new User();
$ob->gamble();
$ob->play();
?>
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Traits Composed of Other Traits
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Using Class Variables & Methods

 The code in our trait can access variables and methods that

were defined in the class that uses our trait. 
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Using Class Variables & Methods

<?php
trait A
{
  function doSomething()
  {
    echo $this->num;
  }
}

class Something
{
  var $num = 2;
  use A;
}

$ob = new Something();
$ob->doSomething();
?>

http://youtu.be/cX9cG520QfE
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Using Class Variables & Methods
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Trait with Abstract Members

 We can define a trait that includes the definition for abstract

methods. 

 Doing so, we can use the trait to impose requirements upon

the classes that uses our trait. 
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Trait with Abstract Members

<?php
trait Learner
{
    abstract function learn();
}

class Student
{
    use Learner;
    function learn()
    {
        echo "i learn...";
    }
}

$ob = new Student();
$ob->learn();

?>
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Trait with Abstract Members
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Trait with Static Method

 It is possible to define a static method within our trait. Doing

so, it will be possible to call that static method from

anywhere in our code. 
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Trait with Static Method

<?php
trait Learner
{
    static function anounce_learning()
    {
        echo "quite please. we learn.";
    }
}

Learner::anounce_learning();
?>
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Trait with Static Method



10/31/15 © Haim Michael 2009. All Rights Reserved. 113

Trait with Static Variable

 It is possible to define a static variable within our trait. Doing

so, it will be possible to refer that static variable from

anywhere in our code. 
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Trait with Static Variable

<?php
trait Learner
{
    static $str = "quite please. we learn.";
}

echo Learner::$str;
?>
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Trait with Static Variable
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Trait with Properties

 It is possible to define our trait with properties. When

instantiating a class that uses our trait we will be able to

refer those properties in the new created object.

 If the class that uses our trait includes the definition for a

property with the same name we will get an error. 
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Trait with Properties

<?php
trait Teacher
{
    var $subject;
}

class Lecturer
{
    use Teacher;
}

$ob = new Lecturer();
$ob->subject = "math";
echo $ob->subject;
?>
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Trait with Properties
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Members Access on Instantiation

 PHP 5.4 allows us to access class members on the object

instantiation. It is useful in those cases when we need to

access a single member of an object and don't need the

object. 
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Members Access on Instantiation

<?
class Utils
{
    function calc($numA,$numB)
    {
        return $numA+$numB;
    }
}

$temp = (new Utils)->calc(3,4);

echo $temp;

?>

http://youtu.be/RL0Kk2eAmOA
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Members Access on Instantiation

<?
class Utils
{
    function calc($numA,$numB)
    {
        return $numA+$numB;
    }
}

$temp = (new Utils)->calc(3,4);

echo $temp;

?>

http://youtu.be/RL0Kk2eAmOA
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Members Access on Instantiation
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The Class::{expr}() Syntax

 PHP 5.4 allows us to call a static function defined within a

class using the following unique syntax:
  

[class name]::{[function name]()
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The Class::{expr}() Syntax

<?
class GoGo
{
    public static function do_something()
    {
        echo "something!!!";
    }
}

GoGo::{'do_something'}()

?>

http://youtu.be/BT_tLBN3C48
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The Class::{expr}() Syntax
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The __get() Magic Function

 When trying to get a value of a variable that doesn't exist the

__get() magic function will be invoked. The name of the

variable we try to access will be passed over to this magic

function.



10/31/15 © Haim Michael 2009. All Rights Reserved. 127

The __set() Magic Function

 When trying to assign a value to a variable that doesn't exist

the __set() magic function will be invoked. The name of

the variable will be passed over as the first argument. The

value will be passed over as the second argument. 
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Sample
<?
class Bongo
{
    var $vec;
    function __construct()
    {
        $this->vec = array();
    }
    function __get($str)
    {
        return $this->vec[$str];
    }
    function __set($var_name,$var_value)
    {
        $this->vec[$var_name] = $var_value;
    }
}

$ob = new Bongo();
$ob->name="balaboa";
$ob->id=12123123;
echo $ob->name." ".$ob->id;
?>

http://youtu.be/2Cc2XJVy0w4
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Sample
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The __PHP_Incomplete_Class Object

 When storing an object in $_SESSION trying to retrieve it in

another page we will get an error if the class itself is not

available when the session_start() function builds the

$_SESSION array. 

 In order to avoid this problem we better make sure that the

class definition is available before we call the

session_start() function.
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The __PHP_Incomplete_Class Object

 Similar scenarios include calling the unserialize() 

function while the class definition is not available.

http://www.youtube.com/watch?v=rs7qUJEY3Ag


10/31/15 © Haim Michael 2009. All Rights Reserved. 132

The __debugInfo() Magic Function

 The __debugInfo() magic function was introduced in

PHP 5.6. It allows us to specify which properties will be

presented together with their values when passing over an

object to the var_dump() function.
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The __debugInfo() Magic Function

<?php
class Something
{
    private $name;
    public function __construct($str)
    {
        $this->name = $str;
    }
    public function __debugInfo()
    {
        return [
            'length of name' => strlen($this->name),
            'name starts with' => substr($this->name,0,1)
        ];
    }
}

$ob = new Something("james");
var_dump($ob);
?>

https://www.youtube.com/watch?v=x1yfBD62Siw&list=PL6B5A743B305A1217
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The __debugInfo() Magic Function
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Anonymous Class

 As of PHP 7, we can define an anonymous class. It is

highly useful when in a need for one object only. 

 The new anonymous class can extend another class and

implements as many interfaces as we want. 

 When defining an anonymous class within the scope of

another class we won't get any access to any of the

private or protected properties of the outer class. 
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Anonymous Class

<?php
class C {
    public function doSomething() {
        echo "<h1>something</h1>";
    }
}
interface I {}
trait T {}
$ob = new class(10) extends C implements I {
    private $num;
    public function __construct($num)
    {
        $this->num = $num;
    }
    use T;
};
$ob->doSomething();
?>

https://youtu.be/PscyWU3b8uI
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Anonymous Class
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The Filtered unserialize() Function

 When we unserialize an object, as of PHP 7 we can

specify the names of the classes that can be

unserialized. 

 Specifying the names of the classes that can be

unserialized improves the security of our code. When

unserializing untrusted data using this function we

prevent possible code injections.
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The Filtered unserialize() Function

<?php
class A {
    private $magic;
    function __construct($number) {
        $this->setMagic($number);
    }
    function setMagic($number) {
        if($number>0) {
            $this->magic = $number;
        }
    }
    function getMagic() {
        return $this->magic;
    }
}

https://youtu.be/-62OnS0TGIM
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The Filtered unserialize() Function

$ob1 = new A(5);
$data = serialize($ob1);
$ob2 = unserialize(

$data,
["allowed_classes" => ["A", "Rectangle"]]);

echo $ob2->getMagic();

?>
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The Filtered unserialize() Function
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