
HTTP Headers

07/02/15 © Abelski eLearning 2

Introduction

 When a web browser receives a web page it sends an HTTP

request to the web server.

Typical HTTP Request

GET / index.html HTTP/1.1

Host: www.jacado.com

Accept-Encoding: UTF-8

User-Agent: Firefox/1.0

http://www.jacado.com/

07/02/15 © Abelski eLearning 3

Introduction

 When the web server receives the browser's request, it

processes the request and sends the HTTP response.

Typical HTTP Response

HTTP/1.1 200 OK

Server: Apache

Content-Type: text/html

Content-Encoding: UTF-8

Content-Length: 232332

[Data]

07/02/15 © Abelski eLearning 4

Introduction

 In addition to the core returned data (e.g. a requested HTML

document), the server reply includes a set of response

headers that contain information about the core returned data.

 An HTTP header is a simple string in the form of key:value.

 Each one of the headers is sent in a separated line.

 New line characters separate each one of the headers from

the rest of the headers. A new line character separates the

headers from the core returned data.

07/02/15 © Abelski eLearning 5

Introduction

 The PHP engine and the web server automatically take care

of sending out the HTTP headers.

07/02/15 © Abelski eLearning 6

The header() Function

 The header() function allows sending back a raw of an HTTP

header.
void header(String $string [,bool $replace

[,int $http_response_code]]

Usually, the $string can be one of the following three options:

The Content-type Option

We will use this option to set the mime type of the file our script sends back to the

web browser.

<?PHP
header(“Content-type: text/html”);
?>

07/02/15 © Abelski eLearning 7

The header() Function

The “Location:” Option

We will use this option to send back a specific URL address we want to redirect the

user to. When using this option it is highly important to ensure that there won't be

any execution of any additional PHP code.

<?PHP
header(“Location: http://www.jacado.com“);
?>

The “HTTP/” Option

We will use this option to set a specific HTTP status code we want to return.

<?PHP
header(“HTTP/1.0 404 Not Found”);
?>

http://www.jacado.com/
http://youtu.be/NAwYEQCA9vM

07/02/15 © Abelski eLearning 8

The header() Function

The $replace optional parameter indicates whether the new header we set should

replace a previous header that was already set... or add a second header of the

same type (with the same name). The default value of this parameter is “true”.

The $http_response_code optional parameter allows us forcing a specific status

code value.

The header() function must be called before any other output... including any white

spaces characters outside of the PHP tags. Avoiding this rule might result in a PHP

error or a failure to complete our header() call successfully.

07/02/15 © Abelski eLearning 9

The header() Function

<?php

header("Content-Type: text/xhtml");

header("Expires: Mon, 22 Jul 2047 05:00:00 GMT");

echo "If you want to see the headers try to browse this

page via one of the following web based sniffers:"

echo "
";

echo "http://webtools.mozilla.org/web-sniffer/";

echo "
";

echo "http://www.delorie.com/web/headers.html";

echo "
";

echo "http://www.rexswain.com/httpview.html";

?>

07/02/15 © Abelski eLearning 10

HTTP Compression

 The HTTP protocol supports the possibility to send data in a

compressed form (using the gzip algorithm).

 The compression level (1..9) is configurable. The default level

is 6.

 When a compressed data is sent back from the server, the

Content-Encoding header is returned with the “gzip” value.

07/02/15 © Abelski eLearning 11

HTTP Compression

 The the following is a typical server reply that includes

compressed data:

HTTP/1.1 200 OK

Server: Apache

Content-Type: text/html

Content-Encoding: gzip

Content-Length: 26395

[GZIP COMPRESSED DATA]

07/02/15 © Abelski eLearning 12

The ob_start() Function

 Calling the ob_start() function will turn on the output

buffering.

bool ob_start ([callback $output_callback

 [, int $chunk_size [, bool $erase]]])

Each one of the three parameters is optional. The $output_callback parameter

allows us setting the name of another function that will receive one string

parameter and return a string. That other function will be called before the data is

sent back to the client. The reply of that other function will be the one that

eventually the client will get.

07/02/15 © Abelski eLearning 13

The ob_start() Function

Passing a value to the $chunk_size parameter will cause the buffer to be flushed

after any output call that causes its buffer's length to be equal or to exceed the

$chunk_size value. Passing $chunk_size the value 0 will cause the buffer to be

sent back to the user only in the end. Passing 1 will set $chunk_size to be 4096.

Passing the 'false' value to the 'erase' optional parameter ensures the buffer will

not be deleted until the script ends.

The ob_start() function returns 'true' if it succeeded in its work, and 'false' if it fails.

(e.g. couldn't find the callable_function).

07/02/15 © Abelski eLearning 14

The ob_gzhandler() Function

 The ob_gzhandler() is the ob_start() callback function

we should use to gzip the output buffer.

 Calling the ob_start(“ob_gzhandler”) will turn on the

output buffering and cause the script's output to be

compressed before it returns back to the client.
string ob_gzhandler (string $buffer , int $mode)

If according to the client request headers the PHP engine understands that the

client browser is not capable of receiving compressed data this method returns

false.

07/02/15 © Abelski eLearning 15

The ob_gzhandler() Function

<?php

ob_start("ob_gzhandler");

?>

<html>

<body>

<p>

If your browser supports receiving compressed data

then this page was received in a compressed format.</p>

</html>

<body>

07/02/15 © Abelski eLearning 16

The ob_gzhandler() Function

 We can use ob_gzhandler() separately without using the

ob_start() function.

 The ob_gzhandler() receives a string and returns its

compressed version in according with the client support for

getting compressed data.

07/02/15 © Abelski eLearning 17

The ob_gzhandler() Function

<?php
$str = "a bba";
echo "strlen(str)=".strlen($str);
echo "
";
$temp = ob_gzhandler($str,9);
echo "strlen(temp)".strlen($temp);
?>

http://youtu.be/pIYfeKlSZ9Q

07/02/15 © Abelski eLearning 18

The ob_gzhandler() Function

07/02/15 © Abelski eLearning 19

The php.ini Compression Setting

 The zlib extension offers the option to transparently compress

your pages on-the-fly, if the requesting browser supports this.

 We can change the compression behavior of the zlib

extension through the php.ini setting file.

07/02/15 © Abelski eLearning 20

Browser's Caching

 Most browsers cache as much of the content they download

as possible. This way the user receives the requested content

in a faster way. The user experience improves.

 Using the “Cache-Control” and the “Expires” headers it is

possible to instruct the browser how to cache the output our

script returns.
header(“Cache-Control: no-cache, must-revalidate”);

header(“Expires: Mon, 31 Jan 2008 02:55:22 GMT”);

07/02/15 © Abelski eLearning 21

Browser's Cookies

 A browser cookie is a small amount of textual data the

browser has received from a specific web server.

 Each cookie has a name and a value. In addition, it includes

various meta data.

 Setting a cookie within a specific web browser is done using

specific HTTP header, the web server includes in its reply.

07/02/15 © Abelski eLearning 22

Browser's Cookies

 Each time a web browser sends an HTTP request to a web

server (the one that has set up the cookie/s) and assuming

that cookie is still alive, the browser will include that cookie

(cookies) in its request.

07/02/15 © Abelski eLearning 23

The setcookie() Function

 The setcookie() function allows us setting a cookie on the

client's browser.
bool setcookie (string $name [, string $value [, int $expire

[, string $path [, string $domain

[, bool $secure [, bool $httponly]]]]]])

As with other headers related functions it is a MUST to ensure that this function is

called before any output (including HTML tags and white spaces) is written back

from our script. All parameters (except for $name) are optional.

07/02/15 © Abelski eLearning 24

The setcookie() Function

setcookie(“id”,”1000232”);

This code sets in client's browser a cookie with the name “id” and the value

“1000232”. That cookie will live as long as the session is alive. Once the session

ends, that cookie will be deleted. In order to have a cookie that continue to live

after the session ends and persists between sessions we need to pass an

expiration date in our call to the setcookie function.

setcookie(“id”,”1000232”,time()+86400*3);

This code will instruct the browser to try and keep the cookie for 3 days.

07/02/15 © Abelski eLearning 25

The setcookie() Function

The $path argument allows us setting a path on our website (relative to our

website's root director). When setting that path, the cookie will be accessible in that

path only. The browser will send a cookie to pages within that path only.

The $secure boolean parameter allows us ensuring the browser will send the new

created cookie when communicating via HTTPS only.

07/02/15 © Abelski eLearning 26

Accessing Cookies

 When a web browser sends a request to a web server, the

PHP engine automatically separates the cookies from the

HTTP headers and places them within the $_COOKIE super

global array.

$id_val = $_COOKIE['id'];

This code returns puts the value of the 'id' cookie within the id_val variable.

07/02/15 © Abelski eLearning 27

Cookie Array Values

 Though the cookie value must be a scalar value (one value

only), it is possible to create a cookie its value is an array via

the same technique used for creating parameters with a value

that is an array of other values.
setcookie(“names[0]”,”moshe”);

setcookie(“names[1]”,”david”);

setcookie(“names[2]”,”john”);

This code creates a cookie that its value is an array that contains three values:

“moshe”, “david” and “john”.

07/02/15 © Abelski eLearning 28

Cookie Array Values

 An alternative way for setting an array values as a cookie

value includes the usage of the implode and the explode

functions.

 The implode function receives two arguments.. an array of

string elements and a string that will be used a the delimiter

when creating a new string based on the array elements.

 The explode function performs the revers action taking a

string composed of multiple string elements.

07/02/15 © Abelski eLearning 29

Cookie Array Values

<?php
$vec=array("michael","david","john","maria");
$delimiter=",";
$str=implode($delimiter,$vec);
echo "\$str=$str";
echo "
";
$array=explode($delimiter,$str);
foreach($array as $k => $v)
{
 echo "
\$v=$v";
}
?>

http://www.youtube.com/watch?v=Y6B09ntmgis

07/02/15 © Abelski eLearning 30

Cookie Array Values

07/02/15 © Abelski eLearning 31

Cookie Deletion

 There is no way to delete a cookie. There is no way to instruct

the browser to delete a specific cookie.

 Passing a negative value to the $expire parameter will

effectively kill the cookie once the session ends.

07/02/15 © Abelski eLearning 32

HttpOnly Cookie

 HttpOnly cookies cannot be accessed using JavaScript. This

type of cookies was introduced by Microsoft and today it is

supported in most web browsers.

 The HttpOnly is an additional flag included in the Set-Cookie

HTTP response header.

Set-Cookie: <name>=<value>[; <Max-Age>=<age>]

[; expires=<date>][; domain=<domain_name>]

[; path=<some_path>][; secure][; HttpOnly]

07/02/15 © Abelski eLearning 33

HttpOnly Cookie

 Calling the setcookie method we just need to pass over the

value true to the httponly parameter. The default value of this

parameter is false.

bool setcookie (string $name

[, string $value

[, int $expire = 0

[, string $path

[, string $domain

[, bool $secure = false

[, bool $httponly = false]]]]]])

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33

