
10/31/15 © 2008 Haim Michael. All Rights Reserved. 1

Exceptions Handling

10/31/15 © 2008 Haim Michael. All Rights Reserved. 2

Introduction

 Exceptions are objects created (instantiated) to describe

errors.
Once an exception is instantiated it is thrown. We can write code to catch and

handle it.

 We can handle the exceptions at different points in our script

execution.

We can code separated scripts to provide separated handling for each one of the

possible exception types.

10/31/15 © 2008 Haim Michael. All Rights Reserved. 3

Introduction

 When a specific exception is not handled it functions as a fatal

error that stops the execution of our PHP script.
The exceptions thrown during a PHP script execution can change the flow of our

code.

10/31/15 © 2008 Haim Michael. All Rights Reserved. 4

The Exception Class

 The exceptions are objects instantiated from a class that must

extend Exception whether directly or indirectly.

class Exception

{

protected $message = ’Unknown Exception’;

protected $code = 0;

protected $file;

...

}

10/31/15 © 2008 Haim Michael. All Rights Reserved. 5

The Exception Class

 When instantiating a class that extends Exception the

interpreter takes care of filling nearing all member attributes of

the new instantiated object. All is left is filling in the message

ID number and the message textual message.

We can easily extend the Exception class in order to describe specific errors and

exceptions related to our application.

10/31/15 © 2008 Haim Michael. All Rights Reserved. 6

Throwing Exceptions

 We can create PHP code that throws exception using the

'throw' construct.

...

if($my_exception_condition)

{

throw new MyException();

}

...

10/31/15 © 2008 Haim Michael. All Rights Reserved. 7

Throwing Exceptions

 When exception is thrown it bubbles up till it is either handled

by a specific PHP script matching the thrown exception or

becomes a fatal error that crashes our application.

10/31/15 © 2008 Haim Michael. All Rights Reserved. 8

The Try & Catch Block

 Exceptions can be caught using the try & catch block.
...

try

{

doSomething();if($my_exception_condition)

...

}

catch(Exception $e)

{

...

}

...

10/31/15 © 2008 Haim Michael. All Rights Reserved. 9

Nesting Try & Catch Blocks

 We can nest different try & catch blocks within each other

handling different type of exceptions in a different way.
...

try

{

try

{

...

}

 catch(OneException $eOne) {... }

}

catch(TwoException $eTwo) {... }

...

10/31/15 © 2008 Haim Michael. All Rights Reserved. 10

Nesting Try & Catch Blocks

 We can place separated catch blocks to handle different types

of exceptions in a separated different way.
...

try

{

...

}

catch(TwoException $eTwo)

{... }

catch(OneException $eOne)

{... }

...

10/31/15 © 2008 Haim Michael. All Rights Reserved. 11

Nesting Try & Catch Blocks

 Once an exception has been caught the execution will

continue directly after the last enclosing catch block.

10/31/15 © 2008 Haim Michael. All Rights Reserved. 12

The 'catch all' Function

 Calling the set_exception_handler() we can set a

specific function to be called whenever an exception is thrown

and is not handled.
...

function myGeneralHandler($e exception)

{

...

}

...

set_exception_handler(“myGeneralHandler”)

...

10/31/15 © 2008 Haim Michael. All Rights Reserved. 13

Sample

<?php

function generalExceptionHandler($e)
{
 echo "
General Error Message
";
}

set_exception_handler("generalExceptionHandler");

echo "
Before...
";

if(true) throw new Exception("MokoBoko Exception La La La");

echo "
After...</BR>";

?>

http://www.youtube.com/watch?v=posMMm66LlM

10/31/15 © 2008 Haim Michael. All Rights Reserved. 14

Sample

10/31/15 © 2008 Haim Michael. All Rights Reserved. 15

The Finally Block

 As of PHP 5.5 we can add a finally block right after the last

catch. Whether an exception was thrown or not and whether

the exception was handheld or not, the finally block always

executes.

10/31/15 © 2008 Haim Michael. All Rights Reserved. 16

The Finally Block

<?php
function divide($a,$b)
{
 if ($b===0)
 {
 throw new Exception('cannot divide by zero!');
 }
 return $a/$b;
}

http://youtu.be/zKUbrSTDBbI

10/31/15 © 2008 Haim Michael. All Rights Reserved. 17

The Finally Block

try
{
 echo divide(5,2)." ";
}
catch (Exception $e)
{
 echo 'exception:\'', $e->getMessage(), "' ";
}
finally
{
 echo "finally1! ";
}

10/31/15 © 2008 Haim Michael. All Rights Reserved. 18

The Finally Block

try
{
 echo divide(4,0)." ";
}
catch (Exception $e) {
 echo 'exception:\'', $e->getMessage(), "' ";
}
finally
{
 echo "finally2! ";
}
?>

10/31/15 © 2008 Haim Michael. All Rights Reserved. 19

The Finally Block

The Output

10/31/15 © Haim Michael 2011. All Rights Reserved. 20

The assert Function

 The assert function allows us to specify a boolean

expression that describes our expectation. We will

usually use it in order to specify a precondition for each

and every function.

10/31/15 © Haim Michael 2011. All Rights Reserved. 21

The assert Function

 This function isn't new. Its prototype allows us to pass

over two arguments. The second argument is optional.

The first argument is the boolean expression we want to

check. The second argument is either a string message

we want the AssertionError object to include or a

reference for a customized exception object we want to

be thrown when the condition isn't met.

void assert (mixed $expression [, mixed $message]);

10/31/15 © Haim Michael 2011. All Rights Reserved. 22

The assert Function

 As of PHP 7 the php.ini file includes two additional

configurations. The zend.assertions and the

assert.exception settings.

 The zend.assertions can be assigned with three

possible values.

 The assert.exception can be assigned with two

possible values.

10/31/15 © Haim Michael 2011. All Rights Reserved. 23

The assert Function

 Assigning zend.assertions with '1' fits the

development phase. Additional code will be generated

and if the assert condition is false an exception will be

thrown.

 Assigning zend.assertions with '-1' fits the

production phase. There won't be any additional code

generated and there won't be any exception thrown if the

condition false. There won't be any price in performance.

10/31/15 © Haim Michael 2011. All Rights Reserved. 24

The assert Function

 Assigning zend.assertions with '0' means that

additional code for throwing the AssertionError will be

generated, but it won't be executed.

10/31/15 © Haim Michael 2011. All Rights Reserved. 25

The assert Function

 Assigning assert.exception with the value '1' means

that when the assertion condition fails then an exception

will be thrown.

 Assigning assert.exception with the value '0' means

that when the assertion condition fails nothing will

happen.

10/31/15 © Haim Michael 2011. All Rights Reserved. 26

The assert Function

<?php
ini_set('assert.exception', 1);

function calculateMagicalNumber($number) {
 assert(false,"number cannot be 13");
 //...
 return 7;
}

$temp = calculateMagicalNumber(13);
echo $temp;
?>

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

