
06/26/12 © 2008 Haim Michael. All Rights Reserved. 1

Databases Connectivity



06/26/12 © 2008 Haim Michael. All Rights Reserved. 2

Introduction

 Most applications involve with using some sort of a data 

storage container. Usually, that container is a database.

 PHP enables us to work with different types of databases, 

mostly relational in their nature. 



06/26/12 © 2008 Haim Michael. All Rights Reserved. 3

Tables Model

id first_name last_name average

1239187 Moshe Israeli 88

4321233 Tami Tintin 98

2312232 Jane Speedo 87

3241232 Goni Mardo 78



© 2008 Haim Michael. All Rights Reserved.

The SQL SELECT Statement

The SELECT statement is used to select data from a database. 

The result of the SELECT statement is a result table, also 

known as the result set. 

SELECT column_name, column_name... 

FROM table_name

SELECT * FROM  table_name



© 2008 Haim Michael. All Rights Reserved.

The WHERE Clause

The WHERE clause is used to extract only those records that 

fulfill a specific criteria.  

SELECT column_name, column_name... 

FROM table_name

WHERE column_name operator value



© 2008 Haim Michael. All Rights Reserved.

The ORDER BY Keyword

The ORDER BY keyword is used to sort the result set by a 

specific column. 

SELECT column_name, column_name... 

FROM table_name

WHERE column_name operator value

ORDER BY column_name



© 2008 Haim Michael. All Rights Reserved.

The DESC Keyword

Adding 'DESC' keyword we can get the data sorted in a 

backward order.  

SELECT column_name, column_name... 

FROM table_name

WHERE column_name operator value

ORDER BY column_name DESC



© 2008 Haim Michael. All Rights Reserved.

The INSERT INTO Statement

The INSERT INTO statement is used to insert new rows into 

our tables.  

INSERT INTO table_name

VALUES (value1, value2, ...)

INSERT INTO table_name (column1, column2, ...) 

VALUES (value1, value2, ...)



© 2008 Haim Michael. All Rights Reserved.

The UPDATE Statement

The UPDATE statement is used to update existing records in a 

table.  

UPDATE table_name

SET column1=value1, column2=value2,...

WHERE column_name=specific_value



© 2008 Haim Michael. All Rights Reserved.

The DELETE Statement

The DELETE statement is used to delete existing records in a 

table.  

DELETE FROM table_name

WHERE column_name = spcific_value



06/26/12 © 2008 Haim Michael. All Rights Reserved. 11

Join Statement

 Using 'join' we can create a single record set based on data 

combined from multiple tables.

 The 'join' sql statement creates a link between two tables 

based on a common set of columns (keys). 

 There are two types of join statements: 

Inner Join

Outer Join



06/26/12 © 2008 Haim Michael. All Rights Reserved. 12

Inner Joins

 The inner join returns rows from both tables only if it succeeds 

to find keys from both tables that satisfy the join condition.
  

SELECT * FROM courses INNER JOIN students 

ON courses.course_id = students.course_id

In this code sample a link is created between the 'students' and the 'courses' 

tables. This query returns the details of those courses have registered students.  

 Inner join statements work well with assertive conditions only. 

Trying a negative condition (e.g. <>) often returns strange 

results. 



06/26/12 © 2008 Haim Michael. All Rights Reserved. 13

Inner Joins Sample



06/26/12 © 2008 Haim Michael. All Rights Reserved. 14

Inner Joins Sample



06/26/12 © 2008 Haim Michael. All Rights Reserved. 15

SELECT * FROM courses
INNER JOIN students 
ON courses.course_id = students.course_id



06/26/12 © 2008 Haim Michael. All Rights Reserved. 16

Outer Joins

 Unlike the inner join statements that restrict the results 

returned to those that match records in both tables, when 

using the outer join statements we get all records from one of 

the two tables only, depending on whether we queried using 

'LEFT JOIN' or ' RIGHT JOIN'. 



06/26/12 © 2008 Haim Michael. All Rights Reserved. 17

Outer Joins

 Left Joins are a type of outer join in which every record in the 

left table that matches the WHERE clause (if exists) will be 

returned regardless whether a match takes place in the ON 

clause of the right table. 



06/26/12 © 2008 Haim Michael. All Rights Reserved. 18

SELECT courses.course_name, students.student_name
FROM courses
LEFT JOIN students ON students.course_id = courses.course_id



06/26/12 © 2008 Haim Michael. All Rights Reserved. 19

Outer Joins

 Right Joins are a type of outer join in which every record in 

the right table that matches the WHERE clause (if exists) will 

be returned regardless whether a match takes place in the 

ON clause of the left table. 



06/26/12 © 2008 Haim Michael. All Rights Reserved. 20

Outer Joins SampleSELECT courses.course_name, students.student_name
FROM courses
RIGHT JOIN students ON students.course_id = courses.course_id



06/26/12 © 2008 Haim Michael. All Rights Reserved. 21

Transactions

 Transaction is a group of operations that are committed (or 

discarded) as if they were an atomic unit.
One of the best examples that assists understanding the Transactions concept is a 

bank transaction through which money is being transferred from one account to 

another. Such operation involves with updating more than a few tables. We want 

this series of operations to be considered as an atomic one.



06/26/12 © 2008 Haim Michael. All Rights Reserved. 22

Transactions

 Databases that support transactions are considered to be 

ACID compliant for offering atomicity (A), consistency (C), 

isolation (I) and durability (D). 
  

Atomicity (A)

Either all tasks of the transaction are performed or none of them.
   

Consistency (C) 

The database remains in a consistent state before the transaction starts and after 

it ends, whether successfully or not. 



06/26/12 © 2008 Haim Michael. All Rights Reserved. 23

Transactions

Isolation (I)

This refers to the requirement that other operations cannot access or see the data 

in the intermediate state during the transaction.
   

Durability (D)

Once the user has been notified of the success the transaction will persist and 

won't be undone. 



06/26/12 © 2008 Haim Michael. All Rights Reserved. 24

Transactions

 Working directly with the data base server we start a 

transaction using 'START TRANSACITON'. We complete it 

using 'COMMIT'. We undo using 'ROLLBACK'.
  

START TRANSACTION;

DELETE FROM courses WHERE course_id = 2;

UPDATE courses SET course_id=999 WHERE course_id=1;

ROLLBACK;



06/26/12 © 2008 Haim Michael. All Rights Reserved. 25

Indices

 Most databases were designed to allow better performance 

when reading the data while having certain amount of 

efficiency be sacrificed when data is written. 

 This efficiency is achieved by using the indices mechanism. 

Indices should be created on those columns that most likely 

will be used more than others in your queries. 



06/26/12 © 2008 Haim Michael. All Rights Reserved. 26

Indices

 Too many indices will cause extra work and damage their 

effectiveness. On the other hand, a relatively small number of 

indices might cause the engine more often to ignore them. 
  

CREATE INDEX student_id ON students (id);

 The primary key is a sort of index. Specifying a column as a 

primary key functions as index.



06/26/12 © 2008 Haim Michael. All Rights Reserved. 27

PHP & MySQL

 PHP supports MySQL since PHP 2.0. 

 The PHP and MySQL technologies are highly related with 

each other allowing to use MySQL within PHP code in a 

natural way. 



06/26/12 © 2008 Haim Michael. All Rights Reserved. 28

MySQLi

 With the release of PHP 5.0 a new MySQL extension was 

released, known as MySQL Improved (AKA 'MySQLi'). 
This new extension takes advantage of many of the new features introduced by 

MySQL (e.g. prepared statements, advanced connection options, security 

improvements and others.). In addition, MySQLi provides a native object oriented 

interface allowing us to extend it in accordance with our needs.

 MySQL and MySQLi extensions share many similarities.
That allows PHP programmers to smoothly upgrade their code to use the MySQLi 

extension instead of the well known procedural oriented.



06/26/12 © 2008 Haim Michael. All Rights Reserved. 29

MySQLi Major Enhancements

 MySQLi allows us to use many of the new capabilities 

available with the recently released MySQL extensions.

 MySQLi allows us to enjoy the following enhancements:
Prepared Statements

Object Oriented Programming Interface

Support for Embedded Server

Enhanced Debugging Capabilities

Support for Transactions



06/26/12 © 2008 Haim Michael. All Rights Reserved. 30

Users Privileges

 As with any other programming language interface MySQL 

supports, a PHP script connecting with MySQL must first 

connect to the MySQL server and must select the database it 

wants to interact with. 

 Doing so as well as interacting with the database performing 

various SQL statements can be carried out only by a user that 

has the required privileges. 
When the user connects with the database those privileges are communicated and 

verified by the MySQL server. 



06/26/12 © 2008 Haim Michael. All Rights Reserved. 31

Connecting MySQL Database

 Interacting with MySQL database starts with setting up the 

connection and ends with closing it. 

 The first step will be instantiating mysqli class with the 

parameters describing the connection we want to set.
     

$mysqli = new mysqli(“server_name”,”username”,”password”,”db_name”);



06/26/12 © 2008 Haim Michael. All Rights Reserved. 32

Connecting MySQL Database

 We can alternatively instantiate mysqli class with an empty 

parameters constructor and set the connection parameters 

calling the connect() method.
  

$mysqli = new mysqli();

$mysqli -> connect(“server_name”,”username”,”password”,”db_name”);



06/26/12 © 2008 Haim Michael. All Rights Reserved. 33

Connecting MySQL Database

 Assuming we have already created the required mysqli 

connection object and we now want to switch to another 

database we can call the select_db method.
  

$mysqli = new mysqli();

$mysqli -> connect(“server_name”,”username”,”password”,”db_name”);

$mysqli -> select_db(“other_db_name”);



06/26/12 © 2008 Haim Michael. All Rights Reserved. 34

MySQL DB Connection Closing

 Once a database was successfully selected we can easily 

execute various queries, such as select, insert, update etc.

 Once a PHP script ends all open databases connections are 

automatically closed and their resources are automatically 

freed. 

 Calling close() terminates a database connection.
  

$mysqli -> close();



06/26/12 © 2008 Haim Michael. All Rights Reserved. 35

Simple Queries

 Sending a query to the database is done by calling the 

query() method. 

This method was declared within the mysqli class. Therefore, we should call it 

using the mysqli object. 
  

class mysqli

{

...

mixed query(string query [, int resultmode])

...

}



06/26/12 © 2008 Haim Michael. All Rights Reserved. 36

Simple Queries

 Calling the query method we can modify its behavior passing 

one of the two available values for the resultmode 

parameter:
  

MYSQLI_STORE_RESULT

The result will be returned as a buffered set. The entire set will be available for an 

immediate browsing. This is the default setting. This setting has a performance 

price (it requires more memory).  
  

MYSQLI_USE_RESULT

The result will be returned as a non buffered set. The set will be retrieved from the 

server on as-needed base. When the set is big we will enjoy a better performance. 



06/26/12 © 2008 Haim Michael. All Rights Reserved. 37

Simple Query Sample

<?php

$mysqli = new mysqli("127.0.0.1","iuser","ipassword",
"store_db");

$query = "SELECT product, id FROM products ORDER BY product";

$result = $mysqli->query($query,MYSQLI_STORE_RESULT);

while(list($name,$id) = $result->fetch_row())
{

printf("%s,%s<br>",$name,$id);
}

$mysqli->close();

?>



06/26/12 © 2008 Haim Michael. All Rights Reserved. 38

MySQLi Prepared Statements

 A prepared statement is an object that represents SQL 

statement that is partially compiled. 

 The prepared statement includes '?' marks representing 

missing values required to complete its execution. 

 We can execute a prepared statement multiple times, each 

time with different values instead of the '?' marks. 

 Using prepared statements is an excellent practice against 

SQL injections. 



06/26/12 © 2008 Haim Michael. All Rights Reserved. 39

MySQLi Prepared Statements

 We can create a MySQLi_STMT object by calling the 

$mysqli->prepare() method. 
$stmt = $mysqli->prepare("INSERT INTO students VALUES (?, ?, ?)");

 We can bind each one of the '?' marks with a specific variable 

using the $stmt->bind_param() method. 

Once the '?' are binded with specific variables we can execute the prepared 

statement, again and again, each time having other values within the binded 

variables.



06/26/12 © 2008 Haim Michael. All Rights Reserved. 40

MySQLi Prepared Statements

... 
$stmt = $mysqli->prepare("INSERT INTO students VALUES (?, ?, ?, ?)");
$stmt->bind_param('issd',$id,$first_name,$last_name,$average);
$id = 123423123;
$first_name = 'Haim';
$last_name = 'Moshe';
$average = 88.2;
$stmt->execute();
... 



06/26/12 © 2008 Haim Michael. All Rights Reserved. 41

MySQLi Prepared Statements

 Working with prepared statements it is also possible to bind 

the results we get from querying a database. 

 We can bind the result with specific variables and use them 

when iterating the rows the result includes.

 Binding the result with specific variables is done by calling the 

$stmt->bind_result() method.



06/26/12 © 2008 Haim Michael. All Rights Reserved. 42

 MySQLi Prepared Statements

... 
$stmt = $mysqli->prepare("SELECT name,average FROM students");
$stmt->bind_result($name,$avg);
while($stmt->fetch())
{
 printf(“%s %s\n”,$name,$avg);
}
$stmt->close();
...  



06/26/12 © 2008 Haim Michael. All Rights Reserved. 43

MySQLi Transactions

 The MySQLi extension implements the transactions 

functionality using the commit() and rollback() methods.

 By default, mysqli works in the auto commit mode, meaning 

that the each database statement is committed immediately. 

Calling the autocommit()method we can change that.

 Calling commit() will complete the execution of the current 

transaction. If it fails the returned value is FALSE. We can use 

that to call the rollback() method.



06/26/12 © 2008 Haim Michael. All Rights Reserved. 44

MySQLi Transactions

...

$mysqli->autocommit(FALSE);

$mysqli->query(“INSERT INTO students (id,name) VALUES (12312,'John')”);

$mysqli->query(“INSERT INTO courses (id,title) VALUES (221,'Math')”);

if(!mysqli->commit())

{

 $mysqli->rollback();

}

...



06/26/12 © 2008 Haim Michael. All Rights Reserved. 45

The 'real_escape_string' Method

 This method escapes special characters a string includes so 

we could use it as part of our SQL statement. 
...

$statement = “SELECT * FROM books WHERE title='”

 .$mysqli->real_escape_string($title).”'”;

...



06/26/12 © 2008 Haim Michael. All Rights Reserved. 46

The 'real_escape_string' Method

<?php
$mysqli = new mysqli("localhost", "my_user", "my_password", "school");

if (mysqli->connect_errno()) 
{
 printf("Connect failed: %s\n", mysqli->connect_error());

exit();
}

$mysqli->query("CREATE TABLE students LIKE stud");

$name = "Big Mose's Friend";

/* this query will fail, cause we didn't escape $name */
if (!$mysqli->query("INSERT INTO students (nickname) VALUES ('$name')")) 
{
 printf("Error: %s\n", $mysqli->sqlstate);
}



06/26/12 © 2008 Haim Michael. All Rights Reserved. 47

The 'real_escape_string' Method

$name = $mysqli->real_escape_string($name);

/* this query with escaped $name will work */
if ($mysqli->query("INSERT into students (nickname) VALUES ('$name')")) 
{
 printf("%d Row inserted.\n", $mysqli->affected_rows);
}

$mysqli->close();
?>



06/26/12 © 2008 Haim Michael. All Rights Reserved. 48

The 'ctype_alpha' Function

 This function receives a string and returns true if each one of 

its characters is an alphabetic character  from current locale. 

 This function is useful for preventing SQL injections when 

filtering input coming from the user over the web.  
...

$title='';

if(ctype_alpha($_GET['title']))

{ 

 $title = $_GET['title'];

}

...



06/26/12 © 2008 Haim Michael. All Rights Reserved. 49

MySQL Native Driver

 The new MySQL native driver provides with an improved 

persistent connection, the function mysqli_fetch_all() 

and with performance statistics functions we can use in order 

to get more info about the performance of our application. 

 In addition, as of PHP 5.3 MySQL native driver supports SSL 

and as of PHP 5.2 MySQL native driver supports the 

compressed client server protocol.



06/26/12 © 2008 Haim Michael. All Rights Reserved. 50

PHP Data Objects

 Since PHP 5.1, the PDO is included within the standard 

distribution of the PHP environment. 

 The PDO (PHP Data Objects) allows us to use one unified 

interface for accessing all databases. The same code. 

Without changes. One single interface.



06/26/12 © 2008 Haim Michael. All Rights Reserved. 51

PHP Data Objects

 PDO provides a data access abstraction layer only. 

Regardless of which database we are using we will use the 

same functions. Working with PDO we still need to install the 

specific database PDO driver required for our work. 

 Many database drivers already exist for PDO, including 

drivers that enable to access Microsoft SQL Server, MySQL, 

Oracle, PostgreSQL and ODBC.



06/26/12 © 2008 Haim Michael. All Rights Reserved. 52

PHP Data Objects

 Working with PDO switching to another database there is a 

need to pay attention to the fact that specific SQL statements 

that work on one database may not work on another. 



06/26/12 © 2008 Haim Michael. All Rights Reserved. 53

PHP Data Objects

try 

{ 

$ob = new PDO('mysql:host=localhost;dbname=school,

  'my_user_name','my_password');

 $ob->setAttribute( PDO::ATTR_EMULATE_PREPARES, 

TRUE);

 $ob->setAttribute( PDO::ATTR_ERRMODE, 

PDO::ERRMODE_EXCEPTION);

... 

}

catch(PDOException $e) {...}



06/26/12 © 2008 Haim Michael. All Rights Reserved. 54

PHP Data Objects

 The querying operation should be performed using the 

'PDO::query()' method. It returns a PDOStatement object. 

Working with a PDOStatment object we can access each one 

of the columns as a property of the object.
...

$results = $ob->query($statement);

foreach($results as $row)

{

 echo $row['course_name'].' '.$row['course_id'];

}

...



06/26/12 © 2008 Haim Michael. All Rights Reserved. 55

PHP Data Objects

 The default fetch mode when calling the query method is 

PDO::FETCH_BOTH. Calling PDO::query() we get an 

array that its values can be accessed both using the numeric 

indexes and the associative keys. 

 Calling the setFetchMode() method on our PDO object we 

can change the default fetch mode. 

Possible values we can pass this method when calling it include the following:  

PDO::FETCH_OBJ, PDO:FETCH_NUM, PDO:FETCH_BOTH and others.



06/26/12 © 2008 Haim Michael. All Rights Reserved. 56

PHP Data Objects

 The inserting, updating and deleting operations should be 

performed using the 'PDO::exec()' method. It returns the 

number of rows affected. 
...

$num_affected_rows = $ob->exec('DELETE FROM courses');

echo 'number of rows being deleted is '.$num_affected_rows;

...



06/26/12 © 2008 Haim Michael. All Rights Reserved. 57

PHP Data Objects Sample

<?php
try
{

$ob = new PDO('mysql:host=127.0.0.1;dbname=mystore',
 'iuser','ipassword');

$ob->setAttribute(PDO::ATTR_ERRMODE,PDO::ERRMODE_EXCEPTION);
$statement = "SELECT product, id FROM inventory ORDER BY product";
$results = $ob->query($statement);
printf("<table>");
foreach($results as $row)
{

printf("<tr><td>%s</td><td>%s</td></tr>",
 $row['product'],$row['id']);

}
printf("</table>");

}
catch(Exception $e)
{

echo $e->getMessage();
}
?>

http://www.youtube.com/watch?v=xqVv9M2UAwU


06/26/12 © 2008 Haim Michael. All Rights Reserved. 58

PHP ORM (Object Relational Mapping)

 Object Relational Mapping is a relatively new approach for 

working with a database interacting with objects instead of 

interacting with the database tables. 
Ready to use frameworks are available to ease our work with databases. Propel is 

one of them.

 Instead of mapping the database tables with objects manually 

we can use ready-to-use frameworks that do the work for us. 

These frameworks may include built-in validation tests as well as any other 

operation common for mapping objects with a database. 



06/26/12 © 2008 Haim Michael. All Rights Reserved. 59

Propel Framework

 Propel is a PHP framework that provides an ORM solution for 

objects persistence and querying, allowing you to work with a 

database indirectly via objects. 

 Propel is based on Torque, an open source ORM project 

developed in Java and maintained by the Apache community. 



06/26/12 © 2008 Haim Michael. All Rights Reserved. 60

Propel Framework

 Working with Propel, executing CRUD (Create, Read, Update 

& Delete) operations as well as validating forms becomes 

fairly easy. Propel can even generate the required SQL 

schema. 



06/26/12 © 2008 Haim Michael. All Rights Reserved. 61

MySQL Native Driver

 The MySQL native driver replaces the MySQL client library 

(libmysql). The MySQL native driver is part of the official PHP 

sources as of PHP 5.3.

 As of PHP 5.3 the communication with the MySQL database, 

whether we use PDO, MySQL or MySQLi is done using the 

native driver. 

 The MySQL native driver is written in C as an extension to the 

PHP execution environment. 



06/26/12 © 2008 Haim Michael. All Rights Reserved. 62

MySQL Native Driver

 The new MySQL native driver provides with an improved 

persistent connection, the function mysqli_fetch_all() 

and with performance statistics functions we can use in order 

to get more info about the performance of our application. 

 In addition, as of PHP 5.3 MySQL native driver supports SSL 

and as of PHP 5.2 MySQL native driver supports the 

compressed client server protocol.



06/26/12 © 2008 Haim Michael. All Rights Reserved. 63

MySQL Native Driver

 When developing for the windows platform the new MySQL 

native driver is enabled by default. When developing for linux 

there PHP needs to be built with the MySQL native driver 

support.


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63

