
© 2008 Haim Michael. All Rights Reserved.

Abstract Class

© 2008 Haim Michael. All Rights Reserved.

Abstract Class

An abstract class is a class we cannot instantiate due to

unimplemented method (or methods) it includes.
Except for that limitation it is the same as any other class. The unimplemented

method should be marked as an abstract method if it was declared within our

abstract class. If it was inherited from one of the base classes then there is no need

to add the 'abstract' keyword.

© 2008 Haim Michael. All Rights Reserved.

Abstract Class

© 2008 Haim Michael. All Rights Reserved.

Abstract Class
abstract class Shape
{
 abstract double area();
}

class Rectangle extends Shape
{
 private double width, height;
 Rectangle(double wVal, double hVal)
 {
 width = wVal;
 height = hVal;
 }
 double area()
 {
 return width * height;
 }
}

class Circle extends Shape
{
 private double radius;
 Circle(double radVal)
 {
 radius = radVal;
 }
 double area()
 {
 return 3.14 * radius * radius;
 }
}

class EquiTriangle extends Shape
{
 private double size;
 EquiTriangle(double val)
 {
 size = val;
 }
 double area()
 {
 return 0.433 * size * size;
 }
}

© 2008 Haim Michael. All Rights Reserved.

Abstract Class

© 2008 Haim Michael. All Rights Reserved.

Polymorphism

Polymorphism is a code fragment that each time we execute it

performs differently.

The main purpose of having an abstract class is to allow us to

implement polymorphism.
An abstract class is a type the same way any other class is. Having an abstract class

we can use variables of its type holding references for objects instantiated from non

abstract class that inherits from the abstract class.

© 2008 Haim Michael. All Rights Reserved.

Polymorphism
Start

End

Shape vec[] = new Shape[4];
vec[0] = new Rectangle(10,20);
vec[1] = new Circle(5);
vec[2] = new EquiliteralTriangle(12);
vec[3] = new Rectangle(12,10);

int index = 0;

vec[index].area();

index<4

index = index + 1;

YES

NO

© 2008 Haim Michael. All Rights Reserved.

Polymorphism

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8

