
Introduction to Git

life michael

© 2013 Haim Michael

Introduction

© 2013 Haim Michael

What is a Version Control System?

 Using a version control system we can track the history of

our project files and revert that collection to another

historic version at any point of time.

 There are three types of version control systems: local

version control system, centralized version control system

and distributed version control system.

© 2013 Haim Michael

Local Version Control Systems

 The local version control systems were the first to emerge.

They allow us to maintain the history of our files on our

local computer.

© 2013 Haim Michael

Centralized Version Control Systems

 The files are kept on a common accessible server that

everyone can access from their local machines.

 Whenever a developer wants to edit a file only the last

version of that file is retrieved.

 When a developer changes a file the change is

automatically shared with all others.

© 2013 Haim Michael

Distributed Version Control Systems

 When using a centralized version control system we risk

our files. There is the chance that we will lose the entire

history of all files.

 Using a distributed version control system we enjoy both

the benefits of using a local version control system and a

centralized one.

© 2013 Haim Michael

Distributed Version Control Systems

 We can make changes on our local computer without

worrying about the connectivity with the server.

 We don't rely on a single copy of all files stored on the

server.

 Our files stored on the server are accessible to the other

developers allowing collaboration and reuse of code.

© 2013 Haim Michael

Distributed Version Control Systems

 When using a distributed version control system we don't

necessarily have a central server for storing the data.

 Each and every developer may hold a clone for the main

repository. Each clone is a full copy of the main repository.

 Each and every clone contains the full history of the

collection and has the same functionality as the original

repository.

© 2013 Haim Michael

Distributed Version Control Systems

 Each and every repository can exchange versions of the

files it includes with other repositories by transporting

these changes.

 We will usually have an up and running server that is

always online.

© 2013 Haim Michael

Distributed Version Control Systems

 Using a distributed version control system we get the

entire history of the files stored on each and every local

machine and at the same time we get all local machines

synced with the server.

© 2013 Haim Michael

What is Git?

 Git is one of the most popular distributed version control

system.

 Git was developed by the Linux kernel development team

and is used by many of today popular open source

projects.

 Git was originally written in C. We can find Git

implementations in other programming languages as Java,

Ruby and Python.

© 2013 Haim Michael

What is Git?

 When using Git, each and every version is a snapshot of

the files for a specific point in time.

 The collections of our project files and their complete

history are stored in a repository.

© 2013 Haim Michael

Git Security

 Every file that goes to the Git repository is check-summed

using an SHA-1 hash before been stored. Each time a file

is retrieved Git validates it using the very same checksum

that was calculated when been stored.

© 2013 Haim Michael

Git Performance

 Git was proved to be a very successful tool handling the

files Linux includes.

 Git takes a snapshot of the entire set of files instead of

storing the differences between each version. This

simplicity ensures excellent performance even when

dealing with huge number of files.

 Comparing with other versions control systems Git takes

significantly less space.

© 2013 Haim Michael

Git Atomicity

 Git ensures that no data gets lost and no version mismatch

happens dues to operations that were performed in a partial

way.

© 2013 Haim Michael

Branching

 Git allows us to work a new different version of the

collection of files.

 The new created branch is separated from its original

collection. We can work on a new branch without effecting

the collection from which it was created.

© 2013 Haim Michael

Merging

 Git allows us to merge two branches into one. This allows

us to have one developer working on a new a feature

while another is working on fixing a bug. Once the two

complete their work we can merge the two branches into

one.

© 2013 Haim Michael

The Working Tree

 The user works on a collection of files that originates from

a certain point in time of the repository.

 This collection of files is known as the working tree. The

user can create new files, change or delete.

© 2013 Haim Michael

The Staging Area

 Once we modify the working tree by creating a new file or

changing an existing one we should go through two steps

in order to persist these changes into the Git repository.

 We first need to add the selected files to the staging area.

The second step would be to commit the changes we

collected on the staging area to the Git repository.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

