
01/01/12 © 2008 Haim Michael. All Rights Reserved. 1

Threads

01/01/12 © 2008 Haim Michael. All Rights Reserved. 2

Introduction
The C# programming language allows us to write code that is

executed in parallel through multi-threading.
Similarly to processes, that can execute concurrently on the same

operating system, we can have multiple threads running concurrently within

a single process. Unlike processes that are fully isolated from each other,

threads might share the heap memory with each other.

Using threads isn't always a good choice. In some cases,

multiple threads damage the performance, instead of

improving it.

01/01/12 © 2008 Haim Michael. All Rights Reserved. 3

Simple Threads
When a C# program starts, a single thread is automatically

created by the CLR and the operating system.
Unless we create more threads, our application will be a single threaded one.

The simplest way to create a new thread in our application is to

instantiate the 'Thread' object and call its 'Start' method. The

'Thread' constructor takes a 'ThreadStart' delegate.

01/01/12 © 2008 Haim Michael. All Rights Reserved. 4

Simple Threads

using System;
using System.Threading;

namespace abelski.csharp
{

class ThreadsDemo
{

static void Main()
{

Thread t1 = new Thread(
new ThreadStart(ThreadsDemo.WriteTapuz));

Thread t2 = new Thread(
new ThreadStart(ThreadsDemo.WriteBanana));

t1.Start();
t2.Start();
for(int i=0; i<100; i++)
{

Console.Write("Carmel");
}

}

01/01/12 © 2008 Haim Michael. All Rights Reserved. 5

Simple Threads

static void WriteBanana()
{

for(int i=0; i<100; i++)
{

Console.Write("Banana");
}

}

static void WriteTapuz()
{

for(int i=0; i<100; i++)
{

Console.Write("Tapuz");
}

}
}

}

01/01/12 © 2008 Haim Michael. All Rights Reserved. 6

Simple Threads

01/01/12 © 2008 Haim Michael. All Rights Reserved. 7

The ThreadStart Delegate

The ThreadStart delegate we should pass over to the

Thread constructor can be ommited. Passing over the name of

specific method will automatically result in passing over a

ThreadStart delegate.

Thread t1 = new Thread(new ThreadStart(ThreadsDemo.WriteTapuz));

is equivalent to

Thread t1 = new Thread(ThreadsDemo.WriteTapuz);

01/01/12 © 2008 Haim Michael. All Rights Reserved. 8

The Join Method

Calling the 'Join' method on a Thread object will cause the

current thread to pause its work and wait till that thread ends.

01/01/12 © 2008 Haim Michael. All Rights Reserved. 9

The Join Method

using System;
using System.Threading;

namespace abelski.csharp
{

class JoinDemo
{

static void Main()
{

Thread t1 = new Thread(WriteOrange);
Thread t2 = new Thread(WriteBanana);
t1.Start();
t2.Start();
t1.Join();
t2.Join();
for(int i=0; i<100; i++)
{

Console.Write("Carmel");
}

}

01/01/12 © 2008 Haim Michael. All Rights Reserved. 10

The Join Method

static void WriteBanana()
{

for(int i=0; i<100; i++)
{

Console.Write("Banana");
}

}

static void WriteOrange()
{

for(int i=0; i<100; i++)
{

Console.Write("Orange");
}

}
}

}

01/01/12 © 2008 Haim Michael. All Rights Reserved. 11

The Join Method

01/01/12 © 2008 Haim Michael. All Rights Reserved. 12

The IsAlive Property

The IsAlive property, each thread has, returns 'true' as long as

the thread is still running. Once the thread ends, IsAlive

property returns 'false'.
Once a thread ends we cannot restart it. The thread ends once the method

referenced in its constructor ends.

01/01/12 © 2008 Haim Michael. All Rights Reserved. 13

The IsAlive Property
using System;
using System.Threading;

namespace abelski.csharp
{

class JoinDemo
{

static void Main()
{

Thread t1 = new Thread(WriteOrange);
Thread t2 = new Thread(WriteBanana);
t1.Start();
t2.Start();
t1.Join();
t2.Join();
Console.Write("\nt1.IsAlive="+t1.IsAlive);
Console.Write("\nt2.IsAlive="+t2.IsAlive);
Console.Write("\n\n");
for(int i=0; i<100; i++)
{

Console.Write("Carmel");
}

}

01/01/12 © 2008 Haim Michael. All Rights Reserved. 14

The IsAlive Property
static void WriteBanana()
{

for(int i=0; i<100; i++)
{

Console.Write("Banana");
}

}

static void WriteOrange()
{

for(int i=0; i<100; i++)
{

Console.Write("Orange");
}

}
}

}

01/01/12 © 2008 Haim Michael. All Rights Reserved. 15

The IsAlive Property

01/01/12 © 2008 Haim Michael. All Rights Reserved. 16

The Thread.Sleep Method

The Thread.Sleep method pauses the current thread for a

specified period.

Calling Thread.Sleep(0)pauses the current thread long

enough to allow other threads to execute. Passing over 0 is a

good practice to avoid threads starvation.

01/01/12 © 2008 Haim Michael. All Rights Reserved. 17

The Thread.Sleep Method

using System;
using System.Threading;

namespace abelski.csharp
{

class ThreadSleepDemo
{

static void Main()
{

Thread t1 = new Thread(
new ThreadStart(ThreadSleepDemo.WriteTapuz));

Thread t2 = new Thread(
new ThreadStart(ThreadSleepDemo.WriteBanana));

t1.Start();
t2.Start();
for(int i=0; i<100; i++)
{

Console.Write("Carmel");
Thread.Sleep(100);

}
}

01/01/12 © 2008 Haim Michael. All Rights Reserved. 18

The Thread.Sleep Method

static void WriteBanana()
{

for(int i=0; i<100; i++)
{

Console.Write("Banana");
Thread.Sleep(100);

}
}

static void WriteTapuz()
{

for(int i=0; i<100; i++)
{

Console.Write("Tapuz");
Thread.Sleep(100);

}
}

}
}

01/01/12 © 2008 Haim Michael. All Rights Reserved. 19

The Thread.Sleep Method

01/01/12 © 2008 Haim Michael. All Rights Reserved. 20

The Thread.Name Property

The Thread.Name property allows us to set a name for each

thread we work with.

When debugging threads it is a good practice setting a

meaningful name for each one of the threads.

01/01/12 © 2008 Haim Michael. All Rights Reserved. 21

The Thread.CurrentThread Property

The Thread.CurrentThread static property holds the

reference for the currently executing thread object.

Calling Thread.CurrentThread.Name should return the

name of the currently executing thread object.

01/01/12 © 2008 Haim Michael. All Rights Reserved. 22

The Thread.CurrentThread Property

using System;
using System.Threading;

namespace abelski.csharp
{

class CurrentThreadDemo
{

static void Main()
{

Thread t1 = new Thread(new ThreadStart(WriteTapuz));
t1.Name = "TapuzesThreader";
Thread t2 = new Thread(new ThreadStart(WriteBanana));
t2.Name = "BananasThreader";
t1.Start();
t2.Start();
for(int i=0; i<100; i++)
{

Console.Write("\n[Carmel "+Thread.CurrentThread.Name+"]");
Thread.Sleep(100);

}
}

01/01/12 © 2008 Haim Michael. All Rights Reserved. 23

The Thread.CurrentThread Property

static void WriteBanana()
{

for(int i=0; i<100; i++)
{

Console.Write("\n[Banana "+Thread.CurrentThread.Name+"]");
Thread.Sleep(100);

}
}

static void WriteTapuz()
{

for(int i=0; i<100; i++)
{

Console.Write("\n[Tapuz "+Thread.CurrentThread.Name+"]");
Thread.Sleep(100);

}
}

}
}

01/01/12 © 2008 Haim Michael. All Rights Reserved. 24

The Thread.CurrentThread Property

01/01/12 © 2008 Haim Michael. All Rights Reserved. 25

Passing Data

When creating a new Thread object we pass over a

ThreadStart delegate to the constructor.

When the represented method has a parameter we can pass

over an argument to that parameter when calling the Start

method on our Thread object.

The represented method can have one parameter only and it

must be of type object. For that reason, in most cases there is

a need to do casting.

01/01/12 © 2008 Haim Michael. All Rights Reserved. 26

Passing Data

The Thread constructor is overloaded to allow accepting either

of the following two delegates:
public delegate void ThreadStart();
public delegate void ParameterizedThreadStart(object ob);

01/01/12 © 2008 Haim Michael. All Rights Reserved. 27

Passing Data

using System;
using System.Threading;

namespace abelski.csharp
{

class PassingDataDemo
{

static void Main()
{

Thread t1 = new Thread(WriteOrange);
t1.Name = "OrangesThreader";
Thread t2 = new Thread(WriteBanana);
t2.Name = "BananasThreader";
t1.Start("ORANGE");
t2.Start("BANANA");
for(int i=0; i<10; i++)
{

Console.Write("\n[Carmel "+Thread.CurrentThread.Name+"]");
Thread.Sleep(100);

}
}

01/01/12 © 2008 Haim Michael. All Rights Reserved. 28

Passing Data

static void WriteBanana(object ob)
{

for(int i=0; i<8; i++)
{

Console.Write("\n["+ob+" "+Thread.CurrentThread.Name+"]");
Thread.Sleep(100);

}
}

static void WriteOrange(object ob)
{

for(int i=0; i<8; i++)
{

Console.Write("\n["+ob+" "+Thread.CurrentThread.Name+"]");
Thread.Sleep(100);

}
}

}
}

01/01/12 © 2008 Haim Michael. All Rights Reserved. 29

Passing Data

01/01/12 © 2008 Haim Michael. All Rights Reserved. 30

Anonymous Method

Alternatively for using the parameterless

ParameterizedThreadStart delegate is to pass over an

anonymous method that includes the call to the method we

want to execute in the separated thread.

Doing so, the target method can accept any number of

arguments and we don't need to do casting.

01/01/12 © 2008 Haim Michael. All Rights Reserved. 31

Anonymous Method
using System;
using System.Threading;

namespace abelski.csharp
{

class PassingDataDemo
{

static void Main()
{

Thread t1 = new Thread(delegate(){WriteBanana("banana",4);});
Thread t2 = new Thread(delegate(){WriteOrange("orange",3);});
t1.Start();
t2.Start();

}

static void WriteBanana(object ob,int num)
{

for(int i=0; i<num; i++)
{

Console.Write("\n["+ob+" "+Thread.CurrentThread.Name+"]");
Thread.Sleep(100);

}
}

01/01/12 © 2008 Haim Michael. All Rights Reserved. 32

Anonymous Method
static void WriteOrange(object ob,int num)
{

for(int i=0; i<num; i++)
{

Console.Write("\n["+ob+" "+Thread.CurrentThread.Name+"]");
Thread.Sleep(100);

}
}

}
}

01/01/12 © 2008 Haim Michael. All Rights Reserved. 33

Data Sharing

Each thread is assigned with its own private memory stack for

local variables.

Fields declared as static are shared between threads. Sharing

data between threads using static variables is the

recommended approach.

Objects references are shared between threads as well.

01/01/12 © 2008 Haim Michael. All Rights Reserved. 34

Threads Pooling

Creating a new thread consumes resources. There is a need to

allocate a private local variables stack separately for each

thread. In addition, each thread consumes memory required for

its execution. Allocating that memory consumes resources as

well.

We can improve our application performance by using a

Threads Pool. The easiest way is calling the

ThreadPool.QueueUserWorkItem method each time a new

thread is required.

01/01/12 © 2008 Haim Michael. All Rights Reserved. 35

Threads Pooling

The target method must accept (at the minimum) a single

object argument.

Calling the SetMinThreads method we can set the number of

idle threads the thread pool maintains when anticipating new

requests for threads.

01/01/12 © 2008 Haim Michael. All Rights Reserved. 36

Threads Pooling
using System;
using System.Threading;

namespace abelski.csharp
{

class ThreadsPoolDemo
{

static void Main()
{

ThreadPool.QueueUserWorkItem(WriteBanana);
ThreadPool.QueueUserWorkItem(WriteOrange);
Console.ReadLine();

}

static void WriteBanana(object ob)
{

for(int i=0; i<8; i++)
{

Console.Write(
"\n[BANANA "+Thread.CurrentThread.Name+"]");

Thread.Sleep(100);
}

}

01/01/12 © 2008 Haim Michael. All Rights Reserved. 37

Threads Pooling

static void WriteOrange(object ob)
{

for(int i=0; i<8; i++)
{

Console.Write(
"\n[ORANGE "+Thread.CurrentThread.Name+"]");

Thread.Sleep(100);
}

}
}

}

01/01/12 © 2008 Haim Michael. All Rights Reserved. 38

Threads Pooling

01/01/12 © 2008 Haim Michael. All Rights Reserved. 39

Foreground & Background Threads

By default, each time we create explicitly a new thread it is a

foreground thread. Working with pool of threads, each new

thread we get is a background thread.

The application is kept alive as long as there is a foreground

thread that is still running. Once all foreground threads finish

the application ends, and if there are any background threads

that are still running they are abruptly terminated.

01/01/12 © 2008 Haim Michael. All Rights Reserved. 40

Foreground & Background Threads

The main thread is (by default) a foreground thread.

We can query or even change a thread's background status

using its IsBackround property.

01/01/12 © 2008 Haim Michael. All Rights Reserved. 41

Foreground & Background Threads

using System;
using System.Threading;

namespace abelski.csharp
{

class ForegroundBackgroundThreadsDemo
{

static void Main()
{

Thread t1 = new Thread(WriteBanana);
Thread t2 = new Thread(WriteOrange);
t1.IsBackground = true;
t2.IsBackground = false;
t1.Start();
t2.Start();

}

01/01/12 © 2008 Haim Michael. All Rights Reserved. 42

Foreground & Background Threads

static void WriteBanana()
{

for(int i=0; i<800; i++)
{

Console.Write("\n[BANANA "+i+"]");
Thread.Sleep(2);

}
}

static void WriteOrange()
{

for(int i=0; i<8; i++)
{

Console.Write("\n[ORANGE "+i+"]");
Thread.Sleep(10);

}
}

}
}

01/01/12 © 2008 Haim Michael. All Rights Reserved. 43

Foreground & Background Threads

01/01/12 © 2008 Haim Michael. All Rights Reserved. 44

Threads Priority

The thread's Priority property determines the execution

time it gets relatively to the other active threads within the

same process.

The value type of this property is of the following enum:
enum ThreadPriority {

Lowest,
BelowNormal,
Normal,
AboveNormal,
Highest}

01/01/12 © 2008 Haim Michael. All Rights Reserved. 45

Asynchronous Delegates

Using asynchronous delegates we can get returned values

back from a thread when it finishes its execution.

First Step

Define a delegate its signature matches the method we want to run concurrently with

the main method.

Second Step

Instantiating the delegate with a specific method defined separately.

Third Step

Calling the BeginInvoke on our delegate and saving its IasyncResult returned

value. Calling BeginInvoke returns immediately allowing us to continue and

perform other activities while the thread is working.

01/01/12 © 2008 Haim Michael. All Rights Reserved. 46

Asynchronous Delegates

Fourth Step

Calling EndInvoke on the delegate, passing over the saved IasyncResult

object, will block the current thread till the concurrently executed method completes.

If the concurrently executed method has already completed then callling EndInvok

returns immediately. Calling EndInvoke returns the value the delegated method

returns.

01/01/12 © 2008 Haim Michael. All Rights Reserved. 47

Asynchronous Delegates

When calling the BeginInvoke function we can also pass

over a callback delegate. Doing so, its represented method will

be automatically called upon completion of the method that

was started when we called the BeginInvoke function.

The callback delegate should be for a method that has one

argument of type IAsyncResult.

01/01/12 © 2008 Haim Michael. All Rights Reserved. 48

Asynchronous Delegates

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading;
namespace abelski.csharp
{
 delegate int Calculate(int numA, int numB);
 class AsynchronousAnotherDemoSimple
 {
 static void Main(string[] args)
 {
 Calculate ob = CalcSum;
 IAsyncResult asynchronousCall_5_14 = ob.BeginInvoke(5,14,null,null);
 IAsyncResult asynchronousCall_9_24 = ob.BeginInvoke(9,24,null,null);
 IAsyncResult asynchronousCall_3_8 = ob.BeginInvoke(3,8,null,null);

01/01/12 © 2008 Haim Michael. All Rights Reserved. 49

Asynchronous Delegates

 //int sum = CalcSum(5, 14);
 string[] vec = { "dave", "moses", "ran", "javiar", "ruth" };
 for (int i = 0; i < vec.Length; i++)
 {
 Console.WriteLine(vec[i]);
 Thread.Sleep(1800);
 }

 Console.WriteLine("sum of 5..14 is "+ob.EndInvoke(asynchronousCall_5_14));
 Console.WriteLine("sum of 9..24 is "+ob.EndInvoke(asynchronousCall_9_24));
 Console.WriteLine("sum of 3..8 is "+ob.EndInvoke(asynchronousCall_3_8));
 }

01/01/12 © 2008 Haim Michael. All Rights Reserved. 50

Asynchronous Delegates

 static int CalcSum(int numberA, int numberB)
 {
 int total = 0;
 for (int i = numberA; i <= numberB; i++)
 {
 total += i;
 Thread.Sleep(1000);
 }
 return total;
 }
 }
}

01/01/12 © 2008 Haim Michael. All Rights Reserved. 51

Asynchronous Delegates

01/01/12 © 2008 Haim Michael. All Rights Reserved. 52

Asynchronous Delegates

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading;
namespace abelski.csharp
{
 delegate int Calculate(int numA, int numB);
 class AsynchronousAnotherDemoLessSimple
 {
 static void Main(string[] args)
 {
 Calculate ob = CalcSum;

//Calculate ob = new Calculate(AsynchronousAnotherDemo.CalcSum);
 IAsyncResult asynchronousCall_5_14 = ob.BeginInvoke(5, 14,

PrintResult, ob);
 IAsyncResult asynchronousCall_9_24 = ob.BeginInvoke(9, 24,

PrintResult, ob);
 IAsyncResult asynchronousCall_3_8 = ob.BeginInvoke(3, 8,

PrintResult, ob);

01/01/12 © 2008 Haim Michael. All Rights Reserved. 53

Asynchronous Delegates

 //int sum = CalcSum(5, 14);
 string[] vec = { "dave", "moses", "ran", "javiar", "ruth" };
 for (int i = 0; i < vec.Length; i++)
 {
 Console.WriteLine(vec[i]);
 Thread.Sleep(1800);
 }

 Console.ReadLine();
 }

01/01/12 © 2008 Haim Michael. All Rights Reserved. 54

Asynchronous Delegates

 static int CalcSum(int numberA, int numberB)
 {
 int total = 0;
 for (int i = numberA; i <= numberB; i++)
 {
 total += i;
 Thread.Sleep(1000);
 }
 return total;
 }
 static void PrintResult(IAsyncResult param)
 {
 Calculate method = (Calculate)param.AsyncState;
 Console.WriteLine(method.EndInvoke(param));

 }
 }
}

01/01/12 © 2008 Haim Michael. All Rights Reserved. 55

Asynchronous Delegates

01/01/12 © 2008 Haim Michael. All Rights Reserved. 56

Synchronization

When threads access the same data it is highly important to

synchronize them.

There are different techniques for synchronizing between

threads.

01/01/12 © 2008 Haim Michael. All Rights Reserved. 57

Blocked Thread

When the execution of a specific thread is paused (for some

reason.. as when waiting for another thread to end when

calling Join or EndInvoke...) that thread is deemed blocked.

A blocked thread consumes very low resources. The CLR is

aware of the blocked thread and wake it up when the blocking

condition is satisfied.

We can check whether a specific thread is blocked by

accessing its ThreadState property.

01/01/12 © 2008 Haim Michael. All Rights Reserved. 58

The ThreadState Property

The TreadState is a flags enum, that combines different

'layers' of data in a bitwise fashion.

Once a thread is created and till it is terminated, it is in at least

one of the possible states, the ThreadState enum describes.
http://msdn.microsoft.com/en-us/library/system.threading.threadstate.aspx

It is useful to use the ThreadState property for diagnostic

purposes. It is unwise to use it for synchronization. The thread

state may change in between testing the ThreadState and

the operation been taken.

http://msdn.microsoft.com/en-us/library/system.threading.threadstate.aspx

01/01/12 © 2008 Haim Michael. All Rights Reserved. 59

The ThreadState Property
using System;
using System.Threading;

class ThreadStateDemo
{
 public static void Countdown()
 {
 for (int i = 100; i > 0; i--)

{
 Console.Write("\n"+i);
 }
 }

 public static void PrintThreadState(Thread thread)
 {
 Console.Write("\nCurrent Thread State is ");
 if ((thread.ThreadState & ThreadState.Aborted) == ThreadState.Aborted)
 Console.Write("Aborted ");
 if ((thread.ThreadState & ThreadState.AbortRequested) ==
 ThreadState.AbortRequested)
 Console.Write("AbortRequested ");
 if ((thread.ThreadState & ThreadState.Background) ==

ThreadState.Background)
 Console.Write("Background ");

01/01/12 © 2008 Haim Michael. All Rights Reserved. 60

The ThreadState Property

 if ((thread.ThreadState &
(ThreadState.Stopped | ThreadState.Unstarted | ThreadState.Aborted))
== 0)
Console.Write("Running ");

 if ((thread.ThreadState & ThreadState.Stopped) == ThreadState.Stopped)
 Console.Write("Stopped ");
 if ((thread.ThreadState & ThreadState.StopRequested) ==

ThreadState.StopRequested)
 Console.Write("StopRequested ");
 if ((thread.ThreadState & ThreadState.Suspended) ==

ThreadState.Suspended)
Console.Write("Suspended ");

 if ((thread.ThreadState & ThreadState.SuspendRequested) ==
ThreadState.SuspendRequested)
Console.Write("SuspendRequested ");

 if ((thread.ThreadState & ThreadState.Unstarted) ==
ThreadState.Unstarted)
Console.Write("Unstarted ");

 if ((thread.ThreadState & ThreadState.WaitSleepJoin) ==
ThreadState.WaitSleepJoin)

 Console.Write("WaitSleepJoin ");
 }

01/01/12 © 2008 Haim Michael. All Rights Reserved. 61

The ThreadState Property

 public static void Main()
 {
 Thread t1 = new Thread(Countdown);
 PrintThreadState(t1);
 t1.Start();
 PrintThreadState(t1);
 t1.Abort();
 PrintThreadState(t1);

Console.Read();
 }
}

01/01/12 © 2008 Haim Michael. All Rights Reserved. 62

The ThreadState Property

01/01/12 © 2008 Haim Michael. All Rights Reserved. 63

The lock Construct

The lock construct ensures that only one thread can enter a

particular section of code.

Using the lock construct we should specify a specific object

the lock refers and place the code within brackets.

static object ob = new object();
static void DoSomething()
{

lock(ob)
{

...
}

}

01/01/12 © 2008 Haim Michael. All Rights Reserved. 64

The lock Construct

When more than one thread contends the lock they are

queued on a FIFO based queue.

When a thread is blocked while awaiting a contended lock its

ThreadState is WaitSleepJoin.

01/01/12 © 2008 Haim Michael. All Rights Reserved. 65

The lock Construct

Using the lock construct is in fact a shortcut for calling the

Monitor.Enter() and Monitor.Exit() methods.

static void DoSomething()
{

Monitor.Enter(ob);
try
{

...
}
finally {Monitor.Exit(ob);}

}

01/01/12 © 2008 Haim Michael. All Rights Reserved. 66

The lock Construct

Calling Monitor.TryEnter we can specify a timeout so that

if the lock isn't obtained within the specified timeout limit then it

returns false.

The synchronization object can be any object as long as it is a

reference type.
It is recommended to have that object privately scoped in order to prevent others

from interacting with it.

When the lock construct isn't in use, the synchronized object

can be accessed without any limitation.

01/01/12 © 2008 Haim Michael. All Rights Reserved. 67

The lock Construct

We can have nested lock statements. Each one of them can

refer another object.

01/01/12 © 2008 Haim Michael. All Rights Reserved. 68

Impoverished Concurrency

When too much code is placed within lock statements we

might get an impoverished concurrency.

01/01/12 © 2008 Haim Michael. All Rights Reserved. 69

Dead Lock

When having two threads while each one of them is waiting for

a lock held by the other so neither can proceed we shall get a

dead lock.

01/01/12 © 2008 Haim Michael. All Rights Reserved. 70

Lock Race

When having more than one thread racing for obtaining a lock

and the wrong thread obtains it first we get a problem known

as 'Lock Race'.

01/01/12 © 2008 Haim Michael. All Rights Reserved. 71

Mutex

The Mutex class provides a functionality similar to the one

we get when using the Lock construct.

Unlike Lock, when using the Mutex class we can use it

across multiple processes.

Acquiring and releasing a Mutex is a bit slower comparing

with Lock.

01/01/12 © 2008 Haim Michael. All Rights Reserved. 72

Mutex

We acquire a Mutex by calling the WaitOne method. We

release it by calling the ReleaseMutex method.

The next code sample shows how to use Mutex in order to

ensure that only one instance of the program can run at any

given time.

If an application terminates without calling the

ReleaseMutex method, the CLR releases Mutex

automatically.

01/01/12 © 2008 Haim Michael. All Rights Reserved. 73

Mutex

using System;
using System.Threading;

class MutexDemo
{

static Mutex mutex = new Mutex(false,"demo");
public static void Main()
{

if(!mutex.WaitOne(2000))
{

Console.WriteLine(
 "another instance of this application is already running...");

Console.ReadLine();
}

01/01/12 © 2008 Haim Michael. All Rights Reserved. 74

Mutex

else
{

try
{

//run the application
Run();

}
finally
{

mutex.ReleaseMutex();
}

}
}
public static void Run()
{

Console.WriteLine("Do Something... Application is Running...");
Console.ReadLine();

}
}

01/01/12 © 2008 Haim Michael. All Rights Reserved. 75

Mutex

01/01/12 © 2008 Haim Michael. All Rights Reserved. 76

Semaphore

Instantiating Semaphore, we get an object that can assist us

synchronizing threads.

The Semaphore object functions similarly to a restaurant.

Once created we specify the maximum number of people that

can enter the restaurant. An additional queue is created to

hold those people that couldn't enter to the restaurant

because it was full.

Each time a person leaves the restaurant, the one on top of

the waiting queue is entered.

01/01/12 © 2008 Haim Michael. All Rights Reserved. 77

Semaphore

Semaphore is useful when trying to ensure a maximum

number of threads being capable of executing a specific code

at the same time.

As with Mutex, a Semaphore can span over separated

processes. The only requirement is having the Semaphore

named, just as with Mutex.

01/01/12 © 2008 Haim Michael. All Rights Reserved. 78

Semaphore
using System;
using System.Threading;

class SemaphoreDemo
{

static Semaphore semaphore = new Semaphore(3,3);
public static void Main()
{

for(int i=0; i<20; i++)
{

new Thread(SemaphoreDemo.DoSomething).Start(i);
}

}
static void DoSomething(object id)
{

Console.WriteLine(id+" wants to access the semaphore");
semaphore.WaitOne();
Console.WriteLine(id+"

has succeeded to access the semaphore");
Thread.Sleep(3000);
Console.WriteLine(id+" is about to leave the semaphore");
semaphore.Release();

}
}

01/01/12 © 2008 Haim Michael. All Rights Reserved. 79

Semaphore

01/01/12 © 2008 Haim Michael. All Rights Reserved. 80

Semaphore

When instantiating Semaphore we pass over two numbers.

The second number is the total number of permissions the

new Semaphore object will hold. The first number is the

initial number of permissions that will be available for threads

that ask for permission by calling the WaitOne() method on

the Semaphore object.

The difference between the two is the number of permissions

that are handed over to the thread through which

Semaphore is instantiated.

01/01/12 © 2008 Haim Michael. All Rights Reserved. 81

Semaphore

In the coming code sample, 3 out of the 5 available

permissions are handed over to the main thread. Only once

the Release() method is called (through the execution of

the 'main' thread) on our Semaphore object permissions are

returned back to the Semaphore object.

01/01/12 © 2008 Haim Michael. All Rights Reserved. 82

Semaphore

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading;

namespace Com.Abelski.Samples
{
 class Program
 {
 static Semaphore mainSemaphore;
 static void Main(string[] args)
 {
 Thread t1 = new Thread(QuaQua);
 Thread t2 = new Thread(QuaQua);
 Thread t3 = new Thread(QuaQua);
 Thread t4 = new Thread(QuaQua);
 Thread t5 = new Thread(QuaQua);
 Thread t6 = new Thread(QuaQua);
 mainSemaphore = new Semaphore(2, 5);

01/01/12 © 2008 Haim Michael. All Rights Reserved. 83

Semaphore
 t1.Start();
 t2.Start();
 t3.Start();
 t4.Start();
 t5.Start();
 t6.Start();
 Thread.Sleep(10000);
 mainSemaphore.Release();
 mainSemaphore.Release();
 mainSemaphore.Release();
 }
 static void QuaQua()
 {
 mainSemaphore.WaitOne();
 for (int i = 0; i <= 30; i++)
 {
 Thread.Sleep(1000);
 Console.WriteLine("QuaQua (thread id " +

Thread.CurrentThread.GetHashCode()+")");
 }
 mainSemaphore.Release();
 }
 }
}

01/01/12 © 2008 Haim Michael. All Rights Reserved. 84

Semaphore

01/01/12 © 2008 Haim Michael. All Rights Reserved. 85

Semaphore

01/01/12 © 2008 Haim Michael. All Rights Reserved. 86

Threads Safety

We consider an application or a method as 'thread safe' if it

doesn't have any indeterminacy in multi threading scenarios.

In most cases, we can turn our application and/or method

into a 'thread safe' one by using locking mechanism. Another

alternative approach involves with minimizing the shared

data.

01/01/12 © 2008 Haim Michael. All Rights Reserved. 87

Threads Safety

Turning an application or a method into a 'thread safe' one

might have a significant development burden. In addition, it

can damage the performance.

01/01/12 © 2008 Haim Michael. All Rights Reserved. 88

Static Members

When dealing with a specific type's static members,

externally locking every access to these members can be

performed by locking on the Type object that represents the

type we are dealing with.

...
lock(typeof(SomeClass))
{
 ...
}
...

01/01/12 © 2008 Haim Michael. All Rights Reserved. 89

Static Members

Each and every code segment that tries to access a lock

block that refers the same type will fail.

Nevertheless, it is important to understand that code

segments that try to access the static member without doing

it from within a lock block won't have any difficult doing so.

01/01/12 © 2008 Haim Michael. All Rights Reserved. 90

Static Members

Unlike other similar programming languages C# doesn't allow

to access static members through an object reference.

Therefore, once we lock on the type we guarantee that no

other code that tries to access that very same static member

will succeed.

By default, all static members throughout the .NET

framework are thread-safe.

01/01/12 © 2008 Haim Michael. All Rights Reserved. 91

Static Members
using System;
using System.Threading;
namespace abelski.samples
{
 public class Program
 {
 public static int num;
 public static void Main()
 {
 new Thread(DoGoGo).Start();
 new Thread(DoBoBo).Start();
 }
 public static void DoGoGo()
 {
 lock (typeof(Program))
 {
 for (int i = 0; i < 20; i++)
 {
 Thread.Sleep(1000);
 Console.WriteLine("DoGoGo bing "+Program.num);
 }
 }
 }

01/01/12 © 2008 Haim Michael. All Rights Reserved. 92

Static Members

public static void DoBoBo()
 {
 for (int i = 0; i < 5; i++)
 {
 lock (typeof(Program))
 {
 Thread.Sleep(1000);
 }
 Program.num++;
 Console.WriteLine("DoBoBo bing "+Program.num);
 }
 }
 }
}

01/01/12 © 2008 Haim Michael. All Rights Reserved. 93

Static Members

01/01/12 © 2008 Haim Michael. All Rights Reserved. 94

Atomic Statements

A statement is considered as an atomic statement if it

executes as a single indivisible instruction on the underlying

processor.
Simple reads and simple assignments on fields their type is of 32 bits (or smaller)

are considered as atomic statements.

01/01/12 © 2008 Haim Michael. All Rights Reserved. 95

Atomic Statements

using System;
using System.Threading;

namespace abelski.csharp
{

class AtomicityDemo
{

public static int num = 100;
public static void Main()
{

for(int i=0; i<10; i++)
{

new Thread(AtomicityDemo.DoSomething).Start();
}

}

01/01/12 © 2008 Haim Michael. All Rights Reserved. 96

Atomic Statements

static void DoSomething()
{

for(int i=0; i<10; i++)
{

num=num-1;
Console.WriteLine("num="+num);

}
}

}
}

01/01/12 © 2008 Haim Michael. All Rights Reserved. 97

Atomic Statements

01/01/12 © 2008 Haim Michael. All Rights Reserved. 98

The 'Interlocked' Class

The Interlocked class provides a simple and an easier

way for locking simple statements that include separated

atomic operations.

Calling the Interlocked.Decrement method we can

decrement the value of a variable in an atomic operation.

01/01/12 © 2008 Haim Michael. All Rights Reserved. 99

The 'Interlocked' Class

using System;
using System.Threading;

namespace abelski.csharp
{
 class AtomicityDemo
 {
 public static int num = 100;
 public static void Main()
 {
 for (int i = 0; i < 10; i++)
 {
 new Thread(AtomicityDemo.DoSomething).Start();
 }
 }

01/01/12 © 2008 Haim Michael. All Rights Reserved. 100

The 'Interlocked' Class

 public static void DoSomething()
 {
 for (int i = 0; i < 10; i++)
 {
 Interlocked.Decrement(ref num);
 //num = num - 1;
 Console.WriteLine("num=" + num);
 }
 }
 }
}

01/01/12 © 2008 Haim Michael. All Rights Reserved. 101

The 'Interlocked' Class

01/01/12 © 2008 Haim Michael. All Rights Reserved. 102

The 'Interlocked' Class

The following code sample shows how to use the

Interlocked.Add method in order to add value in an

atomic operation.

01/01/12 © 2008 Haim Michael. All Rights Reserved. 103

The 'Interlocked' Class

using System;
using System.Threading;

namespace abelski.csharp
{

class InterlockDemo
{

public static int num = 0;
public static void Main()
{

for(int i=0; i<10; i++)
{

new Thread(InterlockDemo.DoSomething).Start();
}
Thread.Sleep(2000);
Console.WriteLine(num);

}

01/01/12 © 2008 Haim Michael. All Rights Reserved. 104

The 'Interlocked' Class

static void DoSomething()
{

for(int i=0; i<10; i++)
{

Interlocked.Add(ref num,1);
//num = num + 1;

}
}

}
}

01/01/12 © 2008 Haim Michael. All Rights Reserved. 105

The 'Interlocked' Class

01/01/12 © 2008 Haim Michael. All Rights Reserved. 106

The 'volatile' Modifier

When executing our program on a multi processors machine,

we might get into unexpected results due to having our

variables values hosted within CPU registers.
The platform might choose to host our variables values within CPU registers in

order to improve the performance.

When a variable value is hosted within a CPU register, there

might be a delay when we try to change that variable value.
The delay might take place till both the value hosted within the CPU register and

the value hosted within the memory are updated.

01/01/12 © 2008 Haim Michael. All Rights Reserved. 107

The 'volatile' Modifier

We can add the 'volatile' modifier when declaring a field.

Using the 'volatile' modifier ensures that one thread

retrieves the most up-to-date value written by another thread.

01/01/12 © 2008 Haim Michael. All Rights Reserved. 108

Timers

When there is a need to execute a specific method

repeatedly, at regular intervals, concurrently with the other

threads our application includes, the simplest way would be

to use a Timer.

The .NET framework provides four timers.
System.Threading.Timer
System.Timers.Timer
System.Windows.Forms.Timer
System.Windows.Threading.DispatcherTimer

01/01/12 © 2008 Haim Michael. All Rights Reserved. 109

Timers
using System;
using System.Threading;

namespace abelski.csharp
{

class TimerDemo
{

public static void Main()
{

Timer timerKuKu =
 new Timer(SayHello,"kuku",2000,800);

Timer timerKuKuRiku =
new Timer(SayHello,"kukuriku",5000,400);

Timer timerQuaQua =
 new Timer(SayHello,"quaquaqua",8000,200);

Console.ReadLine();
timerKuKu.Dispose();
timerKuKuRiku.Dispose();
timerQuaQua.Dispose();

}

01/01/12 © 2008 Haim Michael. All Rights Reserved. 110

Timers

static void SayHello(object data)
{

Console.WriteLine(data);
}

}
}

01/01/12 © 2008 Haim Michael. All Rights Reserved. 111

Timers

01/01/12 © 2008 Haim Michael. All Rights Reserved. 112

Multi Threaded Timers

The System.Threading.Timer and the

System.Timers.Timer use the thread pool to generate

timer events.

They are considered to be multi threaded timers.

01/01/12 © 2008 Haim Michael. All Rights Reserved. 113

Single Threaded Timers

The System.Windows.Forms.Timer and the

System.Windows.Threading.DispatcherTimer rely

on the same thread that started them. The same thread that

started them is the one that calls the scheduled method.

Using each one of these single threaded timers, the same

thread that manages the user interface elements and

controls is the one that executes the scheduled method.

01/01/12 © 2008 Haim Michael. All Rights Reserved. 114

Threads Signaling

When one thread is waiting for another... waiting till it

receives a notification from it... waiting till it receives a

signal... we can use the AutoResetEvent and the

ManualResetEvent classes.

These two classes extend the EventWaitHandle class.

01/01/12 © 2008 Haim Michael. All Rights Reserved. 115

The 'AutoResetEvent' Class

Using the AutoResetEvent class we can easily signal

threads.

Calling the WaitOne() method on the AutoResetEvent

object from within a thread will pause it till a signal is

received.

Calling the Set() method on the AutoResetEvent object

from within any other thread will signal the waiting thread and

wakes it up.

01/01/12 © 2008 Haim Michael. All Rights Reserved. 116

The 'AutoResetEvent' Class

using System;
using System.Threading;

namespace abelski.csharp
{

class AutoResetDemo
{

static EventWaitHandle handle = new AutoResetEvent(false);

public static void Main()
{

new Thread(SayHello).Start("holla");
new Thread(SayHello).Start("hello");
new Thread(SayHello).Start("hi");
Thread.Sleep(2000);
handle.Set();
Thread.Sleep(2000);
handle.Set();
Thread.Sleep(2000);
handle.Set();

}

01/01/12 © 2008 Haim Michael. All Rights Reserved. 117

The 'AutoResetEvent' Class

static void SayHello(object data)
{

Console.WriteLine("inside SayHello data="+data);
handle.WaitOne();
Console.WriteLine(data);

}
}

}

01/01/12 © 2008 Haim Michael. All Rights Reserved. 118

The 'AutoResetEvent' Class

01/01/12 © 2008 Haim Michael. All Rights Reserved. 119

The 'AutoResetEvent' Class

If more than one thread calls the WaitOne method then a

queue of waiting threads is built up behind the scene.

A signal can come from any thread. Any thread (unblocked

one) that can access the AutoResetEvent object can call

the Set method on it, in order to release one of the blocked

threads.

01/01/12 © 2008 Haim Michael. All Rights Reserved. 120

The 'AutoResetEvent' Class

If Set is called and there isn't any thread waiting, the handle

will stay open for as long as it takes till some thread calls

WaitOne. The next code sample shows that.

Calling Set multiple times doesn't create a queue of signals.

Multiple threads that try to call WaitOne won't get an

automatic signal. Only the first one will get an automatic

signal.

01/01/12 © 2008 Haim Michael. All Rights Reserved. 121

The 'AutoResetEvent' Class

using System;
using System.Threading;

namespace abelski.csharp
{

class AutoResetAnotherDemo
{

static EventWaitHandle handle = new AutoResetEvent(false);

public static void Main()
{

handle.Set();
new Thread(SayHello).Start("holla");

}
static void SayHello(object data)
{

Console.WriteLine("inside SayHello data="+data);
handle.WaitOne();
Console.WriteLine(data);

}
}

}

01/01/12 © 2008 Haim Michael. All Rights Reserved. 122

The 'AutoResetEvent' Class

01/01/12 © 2008 Haim Michael. All Rights Reserved. 123

The 'ManualResetEvent' Class

The ManualResetEvent class functions similarly to the

AutoResetEvent class.

Unlike AutoResetEvent class, when working with the

ManualResetEvent class calling the Set() method

functions as if we opened the door so that every thread that

calls WaitOne() on the very same ManualResetEvent

object is immediately signaled with a permission to continue.

Calling Reset() closes that door.

01/01/12 © 2008 Haim Michael. All Rights Reserved. 124

The 'ManualResetEvent' Class
using System;
using System.Threading;

namespace abelski.csharp
{

class ManualResetDemo
{

static EventWaitHandle handle = new ManualResetEvent(false);

public static void Main()
{

handle.Set();
new Thread(SayHello).Start("holla");
new Thread(SayHello).Start("hello");
new Thread(SayHello).Start("shalom");
new Thread(SayHello).Start("salam");
Thread.Sleep(2000);
handle.Reset();
new Thread(SayHello).Start("bonjour");
Thread.Sleep(4000);
handle.Set();

}

01/01/12 © 2008 Haim Michael. All Rights Reserved. 125

The 'ManualResetEvent' Class

static void SayHello(object data)
{

Console.WriteLine("inside SayHello data="+data);
handle.WaitOne();
Console.WriteLine(data);

}
}

}

01/01/12 © 2008 Haim Michael. All Rights Reserved. 126

The 'ManualResetEvent' Class

01/01/12 © 2008 Haim Michael. All Rights Reserved. 127

Two Way Signaling

When we want two threads to signal each other we cannot

signal few times in a raw and expect the other thread to

receive each one of the signals. When calling Set() several

times rapidly the second or third signals may get lost.

We can have two threads communicating with each other

using two AutoResetEvent objects.

01/01/12 © 2008 Haim Michael. All Rights Reserved. 128

Two Way Signaling
using System;
using System.Threading;

namespace abelski.csharp
{

class TwoWaySignalingDemo
{

static EventWaitHandle handleA = new AutoResetEvent(false);
static EventWaitHandle handleB = new AutoResetEvent(false);
static string message;

public static void Main()
{

new Thread(DoSomething).Start();

handleA.WaitOne(); //wait till DoSomething is ready to reply
message = "Hello";
handleB.Set(); //indicate DoSomething it can proceed

handleA.WaitOne(); //wait till DoSomething is ready to reply
message = "Good Morning";
handleB.Set();

01/01/12 © 2008 Haim Michael. All Rights Reserved. 129

Two Way Signaling

handleA.WaitOne(); //wait till DoSomething is ready to reply
message = "How are you?";
handleB.Set();

handleA.WaitOne(); //wait till DoSomething is ready to reply
message = "exit";
handleB.Set();

}
static void DoSomething()
{

while(true)
{

handleA.Set(); //indicate DoSomething is ready
handleB.WaitOne(); //wait for getting a message
if(message=="exit") return;
Console.WriteLine("message received is "+message);

}
}

}
}

01/01/12 © 2008 Haim Michael. All Rights Reserved. 130

Two Way Signaling

01/01/12 © 2008 Haim Michael. All Rights Reserved. 131

Two Way Signaling

The EventWaitHandle's constructor allows us to create a

named EventWaitHandle object, we can use across

multiple processes.
The assigned name is a simple string and it can be of any value that doesn't

unintentionally conflict with a name of another EvenWaitHandle.

EventWaitHandle handle = new EventWaitHandle(
false,
EventResetMmode.AutoReset,
“com.abelski.samples”);

01/01/12 © 2008 Haim Michael. All Rights Reserved. 132

The 'BackgroundWorker' Class

The 'Background Worker' is a helper class for managing a

thread running in the background.

It provides a standard protocol for reporting its progress.

01/01/12 © 2008 Haim Michael. All Rights Reserved. 133

The 'BackgroundWorker' Class

It implements the IComponent interface, which allows it to

be sited within the Visual Studio's designer.

It provides an exception handling mechanism for the working

thread. There is no need to use try & catch block within the

worker method.

A BackgroundWorker object uses ThreadPool.

01/01/12 © 2008 Haim Michael. All Rights Reserved. 134

The 'BackgroundWorker' Class

using System;
using System.Threading;
using System.ComponentModel;

namespace abelski.csharp
{

class BackgroundWorkerDemo
{

static BackgroundWorker worker = new BackgroundWorker();

public static void Main()
{

worker.DoWork += DoSomething;
worker.DoWork += DoBlaBla;
worker.RunWorkerAsync("bla bla bla");
Console.ReadLine();

}

01/01/12 © 2008 Haim Michael. All Rights Reserved. 135

The 'BackgroundWorker' Class

static void DoSomething(object sender, DoWorkEventArgs ev)
{

Console.WriteLine("do something:"+ev.Argument);
Console.WriteLine("sent from "+sender);

}
static void DoBlaBla(object sender, DoWorkEventArgs ev)
{

Console.WriteLine("bla bla bla:"+ev.Argument);
Console.WriteLine("sent from "+sender);

}
}

}

01/01/12 © 2008 Haim Michael. All Rights Reserved. 136

The 'BackgroundWorker' Class

01/01/12 © 2008 Haim Michael. All Rights Reserved. 137

The 'BackgroundWorker' Class

The BackgroundWorker class also enables to set a

RunWorkerCompleted event that fires once the

BackgroundWorker object completes its job.
We can use this event in order to query about exceptions as well as for updating

the user interface. Code within the event handler method (each one of the

threads) isn't allowed to update the user interface.

Calling periodically the ReportProgress from within the

event handler we can update about its progress.
The BackgroundWorker should be registered with method to handle the report

progress reports. The registration should be done using the ProgressChanged

property of the BackgroundWorker object.

01/01/12 © 2008 Haim Michael. All Rights Reserved. 138

The 'BackgroundWorker' Class

In order to add support for canceling a running thread we

should set the WorkerSupportsCancellation property to

'true'.

01/01/12 © 2008 Haim Michael. All Rights Reserved. 139

The 'BackgroundWorker' Class
using System;
using System.Threading;
using System.ComponentModel;

namespace abelski.csharp
{

class BackgroundWorkerSophisticatedDemo
{

static BackgroundWorker worker = new BackgroundWorker();

public static void Main()
{

worker.WorkerReportsProgress = true;
worker.WorkerSupportsCancellation = true;
worker.DoWork += DoSomething;
worker.DoWork += DoNothing;
worker.ProgressChanged += ProgressChangeMethod;
worker.RunWorkerCompleted += WorkerCompletedMethod;
worker.RunWorkerAsync("bla bla bla");
Console.ReadLine();

}

01/01/12 © 2008 Haim Michael. All Rights Reserved. 140

The 'BackgroundWorker' Class
static void WorkerCompletedMethod(

Object sender,
RunWorkerCompletedEventArgs ev)

{
if(ev.Cancelled)
{

Console.WriteLine(sender+" canceled by the thread");
}
else if(ev.Error!=null)
{

Console.WriteLine("exception within the "+sender
+" thread : "+ev.Error.ToString());

}
else
{

Console.WriteLine(sender+" was completed");
}

}

01/01/12 © 2008 Haim Michael. All Rights Reserved. 141

The 'BackgroundWorker' Class
static void ProgressChangeMethod(

Object sender,
ProgressChangedEventArgs ev)

{
Console.WriteLine("from: "+sender

+" progress:"+ev.ProgressPercentage+"%");
}
static void DoSomething(object sender, DoWorkEventArgs ev)
{

Console.WriteLine("do something:"+ev.Argument);
Console.WriteLine("sent from "+sender);
for(int i=0;i<=100; i+=10)
{

worker.ReportProgress(i);
Thread.Sleep(500);

}
}

01/01/12 © 2008 Haim Michael. All Rights Reserved. 142

The 'BackgroundWorker' Class

static void DoNothing(object sender, DoWorkEventArgs ev)
{

Console.WriteLine("do nothing:"+ev.Argument);
Console.WriteLine("sent from "+sender);
for(int i=0;i<=100; i+=5)
{

worker.ReportProgress(i);
Thread.Sleep(400);

}
}

}
}

01/01/12 © 2008 Haim Michael. All Rights Reserved. 143

The 'BackgroundWorker' Class

01/01/12 © 2008 Haim Michael. All Rights Reserved. 144

The 'BackgroundWorker' Class

01/01/12 © 2008 Haim Michael. All Rights Reserved. 145

Local Storage

Using the GetData and SetData methods declared within

the Thread class we can store isolated data. Each thread

will have its own isolated separated data.

Both methods required a LocalDataStoreSlot object that

will identify the slot they refer. The same slot can be used

across all threads. Each thread will have its separated value.

01/01/12 © 2008 Haim Michael. All Rights Reserved. 146

Local Storage

using System;
using System.Threading;
using System.ComponentModel;

namespace abelski.csharp
{

public class LocalStorageDemo
{

public static LocalDataStoreSlot slot =
Thread.GetNamedDataSlot("yarkan_name");

public static void Main()
{

Thread t1 = new Thread(
new Yarkan("david","orange").DoSomething);

t1.Start();
Thread t2 = new Thread(

new Yarkan("michael","apple").DoSomething);
t2.Start();

}
}

01/01/12 © 2008 Haim Michael. All Rights Reserved. 147

Local Storage

public class Yarkan
{

private string name;
private string product;
public Yarkan(string nameVal, string productVal)
{

name = nameVal;
product = productVal;

}
public void DoSomething()
{

Thread.SetData(LocalStorageDemo.slot,name);
for(int i=0;i<=100; i+=10)
{

Console.WriteLine(
 Thread.GetData(LocalStorageDemo.slot)+

"===>"+product);
Thread.Sleep(500);

}
}

}
}

01/01/12 © 2008 Haim Michael. All Rights Reserved. 148

Local Storage

01/01/12 © 2008 Haim Michael. All Rights Reserved. 149

The 'ReaderWriterLockSlim' Class

This class enables us to create two different types of locks, a

read lock and a write lock. When a thread holds a write lock

all other threads trying to obtain a read or a write lock shall

fail. When a thread holds a read lock, any number of threads

may concurrently obtain a read lock as well.

01/01/12 © 2008 Haim Michael. All Rights Reserved. 150

The 'ReaderWriterLockSlim' Class

This class defines the following methods for obtaining and

releasing read and write locks:
public void EnterReadLock()
public void TryEnterReadLock()
public void ExitReadLock()
public void EnterWriteLock()
public void TryEnterWriteLock()
public void ExitWriteLock()

01/01/12 © 2008 Haim Michael. All Rights Reserved. 151

The 'ReaderWriterLockSlim' Class

using System;
using System.Threading;
using System.ComponentModel;
using System.Collections.Generic;

namespace abelski.csharp
{

public class ReaderWriterLockSlimDemo
{

static ReaderWriterLockSlim locker = new ReaderWriterLockSlim();
static List<int> numbers = new List<int>();
static int[] vec = {12,123,512,21,535,6,

3,74654,233,4,1,2,3,
4,5,6,7,8,8,65,4,3,3,2};

public static void Main()
{

new Thread(Read).Start();
new Thread(Read).Start();
new Thread(Read).Start();
new Thread(Write).Start();

}

01/01/12 © 2008 Haim Michael. All Rights Reserved. 152

The 'ReaderWriterLockSlim' Class

public static void Read()
{

while(true)
{

locker.EnterReadLock();
foreach(int i in numbers)
{

Console.WriteLine(i);
}
Thread.Sleep(2000);
locker.ExitReadLock();

}
}

01/01/12 © 2008 Haim Michael. All Rights Reserved. 153

The 'ReaderWriterLockSlim' Class

public static void Write()
{

for(int i=0; i<vec.Length; i++)
{

locker.EnterWriteLock();
Console.WriteLine("writer got a 'WriteLock'");
numbers.Add(vec[i]);
Thread.Sleep(4000);
Console.WriteLine("writer exit the 'WriteLock'");
locker.ExitWriteLock();
Thread.Sleep(4000);

}
}

}
}

01/01/12 © 2008 Haim Michael. All Rights Reserved. 154

The 'ReaderWriterLockSlim' Class

01/01/12 © 2008 Haim Michael. All Rights Reserved. 155

The Abort Method

We can terminate the life of a blocked thread by calling the

Thread.Abort method.
A thread becomes a blocked thread as a result of calling any of the following

methods: Sleep, Join, EndInvoke, WaitOne or Wait.

Calling the Thread.Abort method we can also end the life

of a non-blocked thread, such as a thread that reaches an

infinite loop.

01/01/12 © 2008 Haim Michael. All Rights Reserved. 156

The Interrupt Method

When calling Thread.Interrupt on a blocked thread the

ThreadInterruptedException is thrown.

...
try
{
 Thread.Sleep(...);
}
catch(ThreadInterruptedException ex)
{

...
}
...

01/01/12 © 2008 Haim Michael. All Rights Reserved. 157

The Interrupt Method

Calling the Thread.Interrupt on a thread that is not

blocked, the thread continues to execute till it blocks and

once that happens the ThreadInterruptedException is

thrown.

01/01/12 © 2008 Haim Michael. All Rights Reserved. 158

Threads Termination

Terminating a thread in a safe way involves with using a

boolean flag variable within the thread loop.

...
while(flag)
{
 ...
}
...

01/01/12 © 2008 Haim Michael. All Rights Reserved. 159

Threads Termination

using System;
using System.Collections.Generic;
using System.Threading;
using System.Diagnostics;

namespace ConsoleApplication1
{
 public class Program
 {
 private static bool flag = true;
 public static void Main(string[] args)
 {
 new Thread(GenerateMagicNumbers).Start();
 Thread.Sleep(10000);
 StopGeneratingMagicNumbers();
 }

01/01/12 © 2008 Haim Michael. All Rights Reserved. 160

Threads Termination

 public static void GenerateMagicNumbers()
 {
 Random random = new Random();
 while (flag)
 {
 for (int i = 0; i < 10; i++)
 {
 Console.Write(random.Next(1,1000) + " ");
 }
 Console.WriteLine();
 Thread.Sleep(200);
 }
 }
 public static void StopGeneratingMagicNumbers()
 {
 flag = false;
 }
 }
}

01/01/12 © 2008 Haim Michael. All Rights Reserved. 161

The Wait & Pulse Methods

The Monitor class allows us to signal in between two

threads by calling the Monitor.Wait and the

Monitor.Pulse static methods.

Unlike using the event wait handles, the Wait and Pulse

methods cannot span application domains or processes.

Using Wait and Pulse is much faster than using an event

wait handle.

01/01/12 © 2008 Haim Michael. All Rights Reserved. 162

The Wait & Pulse Methods

using System;
using System.Threading;
using System.ComponentModel;
using System.Collections.Generic;

namespace abelski.csharp
{

public class SimpleWaitPulseDemo
{

static object locker = new object();
static Queue<int> numbers = new Queue<int>();
static int[] vec = {12,123,512,21,535,6,3,74654,233,

4,1,2,3,4,5,6,7,8,8,65,4,3,3,2};

public static void Main()
{

new Thread(Write).Start();
new Thread(Read).Start();

}

01/01/12 © 2008 Haim Michael. All Rights Reserved. 163

The Wait & Pulse Methods

public static void Read()
{

while(true)
{

lock(locker)
{

while(numbers.Count==0)
{

Monitor.Wait(locker);
}
Console.WriteLine(numbers.Dequeue());

}
Thread.Sleep(1000);

}
}

01/01/12 © 2008 Haim Michael. All Rights Reserved. 164

The Wait & Pulse Methods

public static void Write()
{

for(int i=0; i<vec.Length; i++)
{

lock(locker)
{

numbers.Enqueue(vec[i]);
Monitor.Pulse(locker);

}
Thread.Sleep(2000);

}
}

}
}

01/01/12 © 2008 Haim Michael. All Rights Reserved. 165

The Wait & Pulse Methods

01/01/12 © 2008 Haim Michael. All Rights Reserved. 166

Parallelism isn't Multithreaded

We can have multithreading on a single core machine. We

can have parallelism on a multi core machine only.

 Multithreaded Parallelism

CPU CPUCPUCPU

01/01/12 © 2008 Haim Michael. All Rights Reserved. 167

Parallelism isn't Multithreaded

“On a single core you can use threads and you can have

concurrency, but to achieve parallelism on a multi-core box you

have to identify in your code the exploitable concurrency: the

portions of your code that can truly run at the same time.”

 Daniel Moth, Microsoft

01/01/12 © 2008 Haim Michael. All Rights Reserved. 168

When Can We Benefit from Parallelism?

Code we can benefit from running it in parallelism will most

likely have the following characteristic:

1. We can break it down into self encapsulated units.

2. It has no dependencies or shared data.

01/01/12 © 2008 Haim Michael. All Rights Reserved. 169

The Parallel Libraries

Staring with .NET 4.0 we can benefit using parallelism in our

code. Using the new libraries isn't limited to multi-core

machines only.

Using these new libraries our code will automatically scale

saving us from spending time on altering our code to target

single core environments in a different way.

01/01/12 © 2008 Haim Michael. All Rights Reserved. 170

The Amdahl's Law

“The speedup of a program using multiple processors in

parallel computing is limited by the time needed for the

sequential fraction of the program.”

 Gene Amdahl

01/01/12 © 2008 Haim Michael. All Rights Reserved. 171

The Parallel Loops

One of the easiest ways to parallelize our code is by using

the Parallel Loop construct.

The parallel loop construct includes two types of loops:
Parallel.For()
Parallel.ForEach()

01/01/12 © 2008 Haim Michael. All Rights Reserved. 172

The Parallel.For Loop

The Parallel.For static method allows us to pass over a

method and have it executed in a parallel way.

01/01/12 © 2008 Haim Michael. All Rights Reserved. 173

The Parallel.For Loop

using System;
using System.Collections.Generic;
using System.Threading;
using System.Threading.Tasks;
using System.Diagnostics;

namespace ConsoleApplication1
{
 public class Account
 {
 public double Balance { get; set; }
 public Account(double sum)
 {
 Balance = sum;
 }
 public int CalcCreditPoints()
 {
 Thread.Sleep(400);
 return (int)Balance/10;
 }
 }

01/01/12 © 2008 Haim Michael. All Rights Reserved. 174

The Parallel.For Loop

 public class Program
 {
 public static List<Account> accounts = new List<Account>();
 public static void Main(string[] args)
 {
 CreateAccounts();
 Console.WriteLine("parallel... "+CalcParallel());
 Console.WriteLine("serial... "+CalcSerial());
 }
 public static double CalcSerial()
 {
 Stopwatch stopper = new Stopwatch();
 stopper.Start();
 for (int i = 0; i < accounts.Count; i++)
 {
 Console.WriteLine("serially processing {0}",
 accounts[i].CalcCreditPoints());
 }
 stopper.Stop();
 return stopper.ElapsedMilliseconds;
 }

01/01/12 © 2008 Haim Michael. All Rights Reserved. 175

The Parallel.For Loop
 public static double CalcParallel()
 {
 Stopwatch stopper = new Stopwatch();
 stopper.Start();
 Parallel.For(0, accounts.Count, i =>
 {
 Console.WriteLine("parallely processing {0}",
 accounts[i].CalcCreditPoints());
 });
 stopper.Stop();
 return stopper.ElapsedMilliseconds;
 }
 public static void CreateAccounts()
 {
 double[] sums = { 12000, 8000, 18000, -400,
 5400, 8000, 2240 };
 foreach (double sum in sums)
 {
 accounts.Add(new Account(sum));
 }
 }
 }
}

01/01/12 © 2008 Haim Michael. All Rights Reserved. 176

The Parallel.For Loop

01/01/12 © 2008 Haim Michael. All Rights Reserved. 177

The Parallel.ForEach Loop

Similarly to the Parallel.For static method we can find

the Parallel.ForEach.

Both methods allow us to pass over a specific function and

have it executed in a parallel way.

01/01/12 © 2008 Haim Michael. All Rights Reserved. 178

The Parallel.ForEach Loop
using System;
using System.Collections.Generic;
using System.Threading;
using System.Threading.Tasks;
using System.Diagnostics;

namespace ConsoleApplication1
{
 public class Account
 {
 public double Balance { get; set; }
 public Account(double sum)
 {
 Balance = sum;
 }
 public int CalcCreditPoints()
 {
 Thread.Sleep(400);
 return (int)Balance/10;
 }
 }

01/01/12 © 2008 Haim Michael. All Rights Reserved. 179

The Parallel.ForEach Loop
 public class Program
 {
 public static List<Account> accounts = new List<Account>();
 public static void Main(string[] args)
 {
 CreateAccounts();
 Console.WriteLine("parallel... "+CalcParallel());
 Console.WriteLine("serial... "+CalcSerial());
 }
 public static double CalcSerial()
 {
 Stopwatch stopper = new Stopwatch();
 stopper.Start();
 foreach (Account account in accounts)
 {
 Console.WriteLine("serially processing {0}",
 account.CalcCreditPoints());
 }
 stopper.Stop();
 return stopper.ElapsedMilliseconds;
 }

01/01/12 © 2008 Haim Michael. All Rights Reserved. 180

The Parallel.ForEach Loop

 public static double CalcParallel()
 {
 Stopwatch stopper = new Stopwatch();
 stopper.Start();
 Parallel.ForEach(accounts, account =>
 {
 Console.WriteLine("parallely processing {0}",
 account.CalcCreditPoints());
 });
 stopper.Stop();
 return stopper.ElapsedMilliseconds;
 }

01/01/12 © 2008 Haim Michael. All Rights Reserved. 181

The Parallel.ForEach Loop
 public static void CreateAccounts()
 {
 double[] sums = { 12000, 8000, 18000,
 -400, 5400, 8000, 2240 };
 foreach (double sum in sums)
 {
 accounts.Add(new Account(sum));
 }
 }
 }
}

01/01/12 © 2008 Haim Michael. All Rights Reserved. 182

The Parallel.ForEach Loop

01/01/12 © 2008 Haim Michael. All Rights Reserved. 183

Parallelism & Performance

It isn't always faster to work in a parallel way. The overhead

involved in partitioning the data and the cost of invoking a

delegate on each loop iteration doesn't necessary pays in

getting a better performance.

01/01/12 © 2008 Haim Michael. All Rights Reserved. 184

The Parallel.Invoke() Method

Calling this method we can pass over those methods we

want to execute in a parallel way.

The implementation of this method uses tasks.

01/01/12 © 2008 Haim Michael. All Rights Reserved. 185

The Parallel.Invoke() Method

namespace ConsoleApplication1
{
 public class Account
 {
 public double Balance { get; set; }
 public Account(double sum)
 {
 Balance = sum;
 }
 public int CalcCreditPoints()
 {
 Thread.Sleep(400);
 return (int)Balance/10;
 }
 public double CalcUSBalance(double currency)
 {
 Thread.Sleep(400);
 return currency * Balance;
 }
 }

01/01/12 © 2008 Haim Michael. All Rights Reserved. 186

The Parallel.Invoke() Method

 public class Program
 {
 public static List<Account> accounts = new List<Account>();
 public static void Main(string[] args)
 {
 CreateAccounts();
 CalcParallel();
 CalcSerial();
 }

01/01/12 © 2008 Haim Michael. All Rights Reserved. 187

The Parallel.Invoke() Method
 public static void CalcSerial()
 {
 Stopwatch stopper = new Stopwatch();
 stopper.Start();
 double accountCreditPointsAverage = 0;
 double accountBalanceAverage = 0;
 foreach (Account account in accounts)
 {
 AccountCreditPointsAverage +=
 account.CalcCreditPoints();
 }
 foreach (Account account in accounts)
 {
 accountBalanceAverage += account.CalcUSBalance(4.3);
 }
 int num = accounts.Count;
 accountBalanceAverage = accountBalanceAverage / num;
 accountCreditPointsAverage = accountCreditPointsAverage / num;
 Console.WriteLine("serial... average balance is " +
 accountBalanceAverage);
 Console.WriteLine("serial... average credit points is " +

accountCreditPointsAverage);
 stopper.Stop();
 Console.WriteLine("serial... " + stopper.ElapsedMilliseconds);
 }

01/01/12 © 2008 Haim Michael. All Rights Reserved. 188

The Parallel.Invoke() Method

 public static void CalcParallel()
 {
 Stopwatch stopper = new Stopwatch();
 stopper.Start();
 double accountCreditPointsAverage = 0;
 double accountBalanceAverage = 0;
 Parallel.Invoke(() =>
 {
 foreach (Account account in accounts)
 {
 AccountCreditPointsAverage +=
 account.CalcCreditPoints();
 }
 },

01/01/12 © 2008 Haim Michael. All Rights Reserved. 189

The Parallel.Invoke() Method

 () =>
 {
 foreach (Account account in accounts)
 {
 AccountBalanceAverage +=
 account.CalcUSBalance(4.3);
 }
 }
);
 int num = accounts.Count;
 accountBalanceAverage = accountBalanceAverage / num;
 accountCreditPointsAverage = accountCreditPointsAverage / num;
 Console.WriteLine("parallel... average balance is " +
 accountBalanceAverage);
 Console.WriteLine("parallel... average credit points is " +
 accountCreditPointsAverage);
 stopper.Stop();
 Console.WriteLine("parallel... " + stopper.ElapsedMilliseconds);
 }

01/01/12 © 2008 Haim Michael. All Rights Reserved. 190

The Parallel.Invoke() Method

 public static void CreateAccounts()
 {
 double[] sums = { 12000, 8000, 18000, -400, 5400, 8000, 2240 };
 foreach (double sum in sums)
 {
 accounts.Add(new Account(sum));
 }
 }
 }
}

01/01/12 © 2008 Haim Michael. All Rights Reserved. 191

The Parallel.Invoke() Method

01/01/12 © 2008 Haim Michael. All Rights Reserved. 192

Tasks Overview

The Task class represents the work we want completed.

Various methods allow us to create, schedule and

synchronize tasks in our code.

01/01/12 © 2008 Haim Michael. All Rights Reserved. 193

The Tasks Scheduler

The tasks scheduler handles all of the complexity involved

with running tasks. It is kind of a wrapper for the threading

pool.

When we create new tasks they are added to the global tasks

queue.

01/01/12 © 2008 Haim Michael. All Rights Reserved. 194

The Tasks Scheduler

The .NET threading pool creates a number of threads in

accordance with the number of tasks that were added to the

global tasks queue.

Each working thread picks tasks from the global queue and

moves them into its local queue.

Each working thread processes the tasks on its own queue.

If a thread finishes the tasks on its own local queue it helps

other threads to complete their tasks.

01/01/12 © 2008 Haim Michael. All Rights Reserved. 195

The Tasks Scheduler

Threads assisting others to complete their tasks will do so by

stealing tasks from the end of their local queues. This way,

the chance for a collision between the threads is minimized.

01/01/12 © 2008 Haim Michael. All Rights Reserved. 196

Creating Tasks

The simplest way to create a new task involves with calling

the Task.Factory.StartNew() method. This method

receives an Action delegate and immediately starts it.

...
Task t = Task.Factory.StartNew(()=>Console.WriteLine("hello"));
...

01/01/12 © 2008 Haim Michael. All Rights Reserved. 197

Creating Tasks

We can alternatively pass over the Action delegate to the

Task constructor and later when calling Start() have that

task executed.

...
Task t = new Task(()=>Console.WriteLine("hello"));
t.Start();
...

01/01/12 © 2008 Haim Michael. All Rights Reserved. 198

The Wait() and WaitAll() Methods

Calling these methods causes the current thread to wait till

the specified task (or tasks) are finished.

01/01/12 © 2008 Haim Michael. All Rights Reserved. 199

The Wait() and WaitAll() Methods

namespace ConsoleApplication1
{
 public class Account
 {
 public double Balance { get; set; }
 public Account(double sum)
 {
 Balance = sum;
 }
 public int CalcCreditPoints()
 {
 Thread.Sleep(400);
 return (int)Balance/10;
 }
 public double CalcUSBalance(double currency)
 {
 Thread.Sleep(400);
 return currency * Balance;
 }
 }

01/01/12 © 2008 Haim Michael. All Rights Reserved. 200

The Wait() and WaitAll() Methods

 public class Program
 {
 public static List<Account> accounts = new List<Account>();
 public static void Main(string[] args)
 {
 Task creatingAccountsTask = new Task(CreateAccounts);
 Task printTotalTask = new Task(PrintAccountsTotal);
 creatingAccountsTask.Start();
 creatingAccountsTask.Wait();
 printTotalTask.Start();
 Console.ReadLine();
 }
 public static void PrintAccountsTotal()
 {
 double total = 0;
 foreach (Account account in accounts)
 {
 total += account.Balance;
 }
 Console.WriteLine(total);
 }

01/01/12 © 2008 Haim Michael. All Rights Reserved. 201

The Wait() and WaitAll() Methods

 public static void CreateAccounts()
 {
 double[] sums = { 12000, 8000, 18000, -400,
 5400, 8000, 2240 };
 foreach (double sum in sums)
 {
 accounts.Add(new Account(sum));
 Thread.Sleep(200);
 }
 }
 }
}

01/01/12 © 2008 Haim Michael. All Rights Reserved. 202

The WaitAny() Method

Calling this static method will cause the current thread to wait

till one of the specified tasks finishes.
...
Task.WaitAny({taskA,taskB,taskC});
...

01/01/12 © 2008 Haim Michael. All Rights Reserved. 203

The Task.IsCompleted Property

Calling this specific property we can know whether a specific

task is completed or not.
...
while(!taskA.IsCompleted)
{
 Console.WriteLine(“taskA is still running...”);
}
...

01/01/12 © 2008 Haim Michael. All Rights Reserved. 204

The ContinueWith() Method

Calling this method we can specify the order in which we

want our tasks to be completed.
...
taskA.ContinueWith(taskB);
taskB.ContinueWith(taskC);
...

01/01/12 © 2008 Haim Michael. All Rights Reserved. 205

The ContinueWith() Method

using System;
using System.Collections.Generic;
using System.Threading;
using System.Threading.Tasks;
using System.Diagnostics;

namespace ConsoleApplication1
{
 public class Account
 {
 public double Balance { get; set; }
 public Account(double sum)
 {
 Balance = sum;
 }
 public int CalcCreditPoints()
 {
 Thread.Sleep(400);
 return (int)Balance/10;
 }

01/01/12 © 2008 Haim Michael. All Rights Reserved. 206

The ContinueWith() Method

 public double CalcUSBalance(double currency)
 {
 Thread.Sleep(400);
 return currency * Balance;
 }
 }

 public class Program
 {
 public static List<Account> accounts = new List<Account>();
 public static void Main(string[] args)
 {
 Task creatingAccountsTask = new Task(CreateAccounts);
 Task printTotalTask =
 creatingAccountsTask.ContinueWith(
 (t)=>PrintAccountsTotal());
 creatingAccountsTask.Start();
 Console.ReadLine();
 }

01/01/12 © 2008 Haim Michael. All Rights Reserved. 207

The ContinueWith() Method

 public static void PrintAccountsTotal()
 {
 double total = 0;
 foreach (Account account in accounts)
 {
 total += account.Balance;
 }
 Console.WriteLine(total);
 }
 public static void CreateAccounts()
 {
 double[] sums = {12000,8000,18000,-400,5400,8000,2240 };
 foreach (double sum in sums)
 {
 accounts.Add(new Account(sum));
 Thread.Sleep(200);
 }
 }
 }
}

01/01/12 © 2008 Haim Michael. All Rights Reserved. 208

The Result Property

We can get the result returned from executing a task by

referring the Result property.
...
int num = task.Result;
...

If the task still hasn't completed the execution will block and

wait.

01/01/12 © 2008 Haim Michael. All Rights Reserved. 209

The Result Property

namespace ConsoleApplication1
{
 public class Account
 {
 public double Balance { get; set; }
 public Account(double sum)
 {
 Balance = sum;
 }
 public int CalcCreditPoints()
 {
 Thread.Sleep(400);
 return (int)Balance/10;
 }
 public double CalcUSBalance(double currency)
 {
 Thread.Sleep(400);
 return currency * Balance;
 }
}

01/01/12 © 2008 Haim Michael. All Rights Reserved. 210

The Result Property
 public class Program
 {
 public static List<Account> accounts = new List<Account>();
 public static void Main(string[] args)
 {
 Task creatingAccountsTask = new Task(CreateAccounts);
 Task<double> calculateTotalTask =
 new Task<double>(CalculateAccountsTotal);
 creatingAccountsTask.Start();
 creatingAccountsTask.Wait();
 calculateTotalTask.Start();
 double result = calculateTotalTask.Result;
 Console.WriteLine("result=" + result);
 Console.ReadLine();
 }
 public static double CalculateAccountsTotal()
 {
 double total = 0;
 foreach (Account account in accounts)
 {
 Thread.Sleep(500);
 total += account.Balance;
 }
 return total;
 }

01/01/12 © 2008 Haim Michael. All Rights Reserved. 211

The Result Property

 public static void CreateAccounts()
 {
 double[] sums = {12000,8000,18000,-400,5400,8000,2240};
 foreach (double sum in sums)
 {
 accounts.Add(new Account(sum));
 Thread.Sleep(200);
 }
 }
 }
}

01/01/12 © 2008 Haim Michael. All Rights Reserved. 212

The Barrier Class

We will use this class when having a set of (two or more)

threads that a predefined number of them first needs to

complete or reach a specific point in their execution before

moving forward.

01/01/12 © 2008 Haim Michael. All Rights Reserved. 213

The Barrier Class
using System;
using System.Collections.Generic;
using System.Threading;
using System.Threading.Tasks;
using System.Diagnostics;

namespace ConsoleApplication1
{
 public class Account
 {
 public double Balance { get; set; }
 public Account(double sum)
 {
 Balance = sum;
 }
 public int CalcCreditPoints()
 {
 Thread.Sleep(400);
 return (int)Balance/10;
 }

01/01/12 © 2008 Haim Michael. All Rights Reserved. 214

The Barrier Class
 public double CalcUSBalance(double currency)
 {
 Thread.Sleep(400);
 return currency * Balance;
 }
 }
 public class Program
 {
 public static List<Account> accounts = new List<Account>();
 public static Barrier myBarrier = new Barrier(3);
 public static double balanceTotal = 0;
 public static double creditPointsTodal = 0;
 public static void Main(string[] args)
 {
 CreateAccounts();
 new Thread(CalculateAccountsTotal).Start();
 new Thread(CalculateTotalCreditPoints).Start();
 myBarrier.SignalAndWait();
 Console.WriteLine("total balance = " + balanceTotal);
 Console.WriteLine("total credit points = " +
 creditPointsTodal);
 Console.ReadLine();
 }

01/01/12 © 2008 Haim Michael. All Rights Reserved. 215

The Barrier Class
 public static void CalculateAccountsTotal()
 {
 double total = 0;
 foreach (Account account in accounts)
 {
 Thread.Sleep(500);
 total += account.Balance;
 }
 balanceTotal = total;
 myBarrier.SignalAndWait();
 }
 public static void CalculateTotalCreditPoints()
 {
 double total = 0;
 foreach (Account account in accounts)
 {
 Thread.Sleep(500);
 total += account.CalcCreditPoints();
 }
 creditPointsTodal = total;
 myBarrier.SignalAndWait();
 }

01/01/12 © 2008 Haim Michael. All Rights Reserved. 216

The Barrier Class

 public static void CreateAccounts()
 {
 double[] sums = {12000,8000,18000,-400,5400,8000,2240};
 foreach (double sum in sums)
 {
 accounts.Add(new Account(sum));
 }
 }
 }
}

01/01/12 © 2008 Haim Michael. All Rights Reserved. 217

The CountDownEvent Class

When instantiating this class we set an integer value. Each

thread that blocks on the object we got will resume its

execution when the total number of paused threads reached

the predefined integer value.

Each time the Signal() method is called the value of the

inner counter decreases by one. When that counter reaches

0 all paused threads resume their execution.

01/01/12 © 2008 Haim Michael. All Rights Reserved. 218

The CountDownEvent Class

using System;
using System.Collections.Generic;
using System.Threading;
using System.Threading.Tasks;
using System.Diagnostics;

namespace ConsoleApplication1
{
 public class Program
 {
 private static CountdownEvent counter = new CountdownEvent(2);
 public static void Main(string[] args)
 {
 new Thread(Say).Start("shalom");
 new Thread(Say).Start("holla");
 counter.Wait();
 Console.WriteLine("end");
 }

01/01/12 © 2008 Haim Michael. All Rights Reserved. 219

The CountDownEvent Class
 public static void Say(object str)
 {
 for (int i = 0; i < 10; i++)
 {
 Console.WriteLine(str);
 Thread.Sleep(200);
 }
 counter.Signal();
 }
 }
}

01/01/12 © 2008 Haim Michael. All Rights Reserved. 220

The CountDownEvent Class

