
05/16/10 © 2008 Haim Michael. All Rights Reserved. 1

Networking

05/16/10 © 2008 Haim Michael. All Rights Reserved. 2

Introduction
The C# programming language offers variety of networking

related classes in the System.Net.* name space.
These classes support various standard network protocols, such as HTTP, TCP/IP

and FTP.

WebClient
This class implements the Facade design pattern while providing support for simple

download/upload operations via HTTP and FTP.

WebRequest & WebResponse
These classes represent requests and responses involved with client side HTTP and

FTP operations.

05/16/10 © 2008 Haim Michael. All Rights Reserved. 3

Introduction
HttpListener
This class can be used for building an HTTP server.

SmtpClient
These class can be used for developing a mailing client via SMTP.

Dns
This class assists with converting between domain names and their IP addresses.

TcpClient, UdpClient, TcpListener & Socket
These classes can be used for developing TCP\IP and UDP client server

applications.

05/16/10 © 2008 Haim Michael. All Rights Reserved. 4

Computer Addresses
Each computer in a network has an IP number. The .NET

framework supports both the IPV4 and the IPV6 addressing

systems.

The System.Net.IPAddress class represents a computer

address.
...
IPAddress address = new IPAddress(new byte[]{127,0,0,01});
IPAddress address = new IPAddress(“127.0.0.1”);
...

05/16/10 © 2008 Haim Michael. All Rights Reserved. 5

Computer Addresses
Both UDP and TCP protocols support each IP address with

65,535 ports, allowing each computer with a single IP address

to run multiple applications, each one of them on a its own

separated port.
The ports in the range of 1..1024 are usually kept for standard applications, such as

HTTP (port 80), SMTP (port 25) etc.

05/16/10 © 2008 Haim Michael. All Rights Reserved. 6

Computer Addresses
Each combination of an IP number and a port address is

represented in .NET by an IPEndPoint object.
...
IPAddress address = new IPAddress(new byte[]{127,0,0,01});
IPEndPoint point = new IPEndPoint(address,8080);
...

05/16/10 © 2008 Haim Michael. All Rights Reserved. 7

URIs
URI is a formatted string that describes a resource on the

Internet on on a Local Area Network (Intranet).
The resource can be a file, an email address, a web page or even a small

executable code that generates content dynamically sent back to the browser.

05/16/10 © 2008 Haim Michael. All Rights Reserved. 8

URIs
We can easily construct a URI object by passing over a string

of any of the following optional formats:

URI String

It can be either a web URI address such as http://www.jacado.com or a local file URI

address such as file://michh/docs/memo.doc.

Local File Absolute Path

It can be any full path to a file on our computer such as c:\docs\memo.txt.

UNC Path

It can be any UNC path to a file on our local area network, such as

\\michh\share\docs\memo.txt.

http://www.jacado.com/
file://michh/docs/memo.doc
file://michh/share/docs/memo.txt

05/16/10 © 2008 Haim Michael. All Rights Reserved. 9

URIs
The Uri's 'IsLoopback' property indicates whether it

references the local host.

05/16/10 © 2008 Haim Michael. All Rights Reserved. 10

URIs
The Uri's 'IsFile' property indicates whether the Uri

references a local file.
If 'IsFile' is true, referring 'LocalPath' property returns an absolute path we can

access by calling the File.Open method.

05/16/10 © 2008 Haim Michael. All Rights Reserved. 11

URIs
The Uri's 'IsUnc' property indicates whether the Uri references

a UNC path.

05/16/10 © 2008 Haim Michael. All Rights Reserved. 12

URIs
The Uri's 'EscapeUriString()' method converts a string

into a valid URL by converting all characters with an ASSCII

value bigger than 127 into their hexadecimal representation.

05/16/10 © 2008 Haim Michael. All Rights Reserved. 13

WebRequest & WebResponse
The WebRequest and the WebResponse encapsulate a

request and a response.

05/16/10 © 2008 Haim Michael. All Rights Reserved. 14

The WebClient Class

The WebClient class is a facade class that does all work

involved with using the WebRequest and WebResponse
classes.

The WebClient's BaseAddress property allows us to specify

a string to be prefixed to all addresses.

05/16/10 © 2008 Haim Michael. All Rights Reserved. 15

The WebClient Download Methods

The WebClient class includes the following Download

methods:

public void DownloadFile(string address, string fileName);
public string DownloadString(string address);
public byte[] DownloadData(string address);
public Stream OpenRead(string address);

05/16/10 © 2008 Haim Michael. All Rights Reserved. 16

The WebClient Upload Methods

The WebClient class includes the following Upload methods:

public byte[] UploadFile(string address, string fileName);
public byte[] UploadFile(string address, string method,

 string fileName);
public string UploadString(string address, string data);
public string UploadString(string address, string method,
 string data);
public byte[] UploadData(string address, byte[] data);
public byte[] UploadData(string address, string method,
 byte[] data);
public byte[] UploadValues(string address, string method,
 NameValueCollection data);

05/16/10 © 2008 Haim Michael. All Rights Reserved. 17

The WebClient Upload Methods
public Stream OpenWrite(string address);
public Stream OpenWrite(string address, string method);

Calling the UploadValues method we can post values to

HTTP form.

05/16/10 © 2008 Haim Michael. All Rights Reserved. 18

The WebClient Sample

using System;
using System.Net;

namespace abelski.csharp
{

class WebClientDemo
{

static void Main()
{

using(WebClient web = new WebClient())
{

web.DownloadFile(
"http://www.abelski.com/courses/csharp/introduction.pdf",
"thr.pdf");

}
System.Diagnostics.Process.Start("thr.pdf");

}
}

}

http://www.abelski.com/courses/csharp/introduction.pdf

05/16/10 © 2008 Haim Michael. All Rights Reserved. 19

The WebClient Sample

05/16/10 © 2008 Haim Michael. All Rights Reserved. 20

The WebRequest Class

Using the WebRequest class the first step is instantiating that

class with a URI pointing at the resource we request.
The next steps might be assigning the Proxy property as well as the Credentials

property (if there is a need).

05/16/10 © 2008 Haim Michael. All Rights Reserved. 21

The WebRequest Class

In order to upload data we should call the

GetRequestStream on the WebRequest object and write to

the stream we get.

05/16/10 © 2008 Haim Michael. All Rights Reserved. 22

The WebRequest Class

In order to download data we should first call GetResponse

on the WebRequest object. Calling this method returns a

reference for a WebResponse object.

Calling GetResponseStream on the WebResponse object

should provide us with a stream we can read.

05/16/10 © 2008 Haim Michael. All Rights Reserved. 23

The WebRequest Sample
using System;
using System.Net;
using System.IO;

namespace abelski.csharp
{

class WebRequestDemo
{

static void Main()
{

WebRequest request = null;
HttpWebResponse response = null;
Stream dataStream = null;
StreamReader reader = null;
try
{

request = WebRequest.Create ("http://www.yahoo.com/");
response = (HttpWebResponse)request.GetResponse ();
Console.WriteLine (response.StatusDescription);
dataStream = response.GetResponseStream ();

05/16/10 © 2008 Haim Michael. All Rights Reserved. 24

The WebRequest Sample
reader = new StreamReader (dataStream);
string responseFromServer = reader.ReadToEnd ();
Console.WriteLine (responseFromServer);

}
catch(Exception e)
{

Console.WriteLine(e.ToString());
}
finally
{

reader.Close ();
dataStream.Close ();
response.Close ();

}
 }

}
}

05/16/10 © 2008 Haim Michael. All Rights Reserved. 25

The WebRequest Sample

05/16/10 © 2008 Haim Michael. All Rights Reserved. 26

Proxy Server
The proxy server is an intermediate through which HTTP and

FTP requests are routed.

Organizations usually hold a proxy server for security reasons.

The proxy server can request its clients to authenticate. The

proxy server can screen the content its users browse.

05/16/10 © 2008 Haim Michael. All Rights Reserved. 27

Proxy Server
The proxy server has its own address. The Proxy property the

WebClient and the WebRequest have enable us to set them

with a WebProxy object, that represents a proxy server.

05/16/10 © 2008 Haim Michael. All Rights Reserved. 28

Proxy Server
...
WebProxy prox = new WebProxy(“122.131.12.23”,720);
prox.Credentials = new NetworkCredential(“iuser”,”ipass”);
WebClient web = ...
web.Proxy = prox;
...

05/16/10 © 2008 Haim Michael. All Rights Reserved. 29

Proxy Server
...
WebProxy prox = new WebProxy(“122.131.12.23”,720);
prox.Credentials = new NetworkCredential(“iuser”,”ipass”);
WebRequest request = ...
request.Proxy = prox;
...

05/16/10 © 2008 Haim Michael. All Rights Reserved. 30

Proxy Server
If we don't have a proxy and we don't set the Proxy property

to 'null' on all WebClient and WebRequest objects the

framework will attempt to automatically detect the proxy

settings. That might cost us up to 30 sec.

05/16/10 © 2008 Haim Michael. All Rights Reserved. 31

Proxy Server
We can set a global default proxy by referring the

DefaultWebProxy property in WebRequest class.
...
WebRequest.DefaultWebProxy = prox;
...

05/16/10 © 2008 Haim Michael. All Rights Reserved. 32

Authentication
Using an object instantiated from NetworkCredential we

can provide a username and a password when accessing an

HTTP or FTP website.
...
using (WebClient client = new WebClient())
{
 ...
 client.Credentials = new NetworkCredentials(username,password);
 ...
}
...

05/16/10 © 2008 Haim Michael. All Rights Reserved. 33

Authentication
The NetworkCredential class supports dialog based

authentication protocols as Basic and Digest.

05/16/10 © 2008 Haim Michael. All Rights Reserved. 34

Parallel Execution
Communication over the network can be time consuming. In

many cases it is more efficient to have multiple WebClient or

multiple WebRequest objects executed concurrently.

05/16/10 © 2008 Haim Michael. All Rights Reserved. 35

Parallel Execution
using System;
using System.Net;
using System.IO;
using System.Threading;

namespace abelski.csharp
{

class ConcurrentNetworkingDemo
{

static void Main()
{

string[] links = {
"http://www.abelski.com/courses/csharp/introduction.pdf",
"http://www.abelski.com/courses/csharp/basic.pdf",
"http://www.abelski.com/courses/csharp/oop.pdf"
};

for(int i=0; i<links.Length; i++)
{

new Thread(Download).Start(links[i]);
}

 }

http://www.abelski.com/courses/csharp/introduction.pdf
http://www.abelski.com/courses/csharp/basic.pdf
http://www.abelski.com/courses/csharp/oop.pdf

05/16/10 © 2008 Haim Michael. All Rights Reserved. 36

Parallel Execution
static void Download(Object ob)
{

using(WebClient client = new WebClient())
{

try
{

string[] str = ((string)ob).Split('/');
string filename = str[str.Length-1];
Console.WriteLine(filename+" started to download");
client.Proxy = null;
client.DownloadFile((string)ob,filename);
Console.WriteLine(filename+" was saved");

}
catch(WebException e)
{

Console.WriteLine(e.Status);
}

}
}

}
}

05/16/10 © 2008 Haim Michael. All Rights Reserved. 37

Parallel Execution

05/16/10 © 2008 Haim Michael. All Rights Reserved. 38

The HTTP Headers
The WebClient and the WebRequest objects enable us to

add custom HTTP headers for our request as well as to

enumerate the HTTP headers assigned to our response.
...
using(WebClient client = new WebClient()) {
 ...
 client.Headers.Add(“header_name”,”header_value”);
 ...

foreach(string name in client.ResponseHeaders.Keys) {
 Console.WriteLine(name+”=”+client.ResponseHeaders[name]);

}
}
...

05/16/10 © 2008 Haim Michael. All Rights Reserved. 39

The HTTP Headers
using System;
using System.Net;
using System.IO;
using System.Threading;

namespace abelski.csharp
{

class HttpHeadersDemo
{

static void Main()
{

using(WebClient client = new WebClient())
{

client.Proxy = null;
client.DownloadString("http://www.jacado.com");
foreach(string name in client.ResponseHeaders.Keys)
{

Console.WriteLine(name
+"="+client.ResponseHeaders[name]);

}
}

}
}

}

05/16/10 © 2008 Haim Michael. All Rights Reserved. 40

The HTTP Headers

05/16/10 © 2008 Haim Michael. All Rights Reserved. 41

The Query String
The WebClient object provides an easy way to add query

strings through the QueryString dictionary style property.

http://www.abelski.com/store.php?id=12&name=moshe
Query String

05/16/10 © 2008 Haim Michael. All Rights Reserved. 42

The Query String
using System;
using System.Net;
using System.IO;
using System.Threading;

namespace abelski.csharp
{

class QueryStringDemo
{

static void Main()
{

using(WebClient client = new WebClient())
{

client.Proxy = null;
client.QueryString.Add("productId","207573");
client.QueryString.Add("storeId","2218");
client.QueryString.Add("deviceId","500");
client.QueryString.Add("platformId","20");

05/16/10 © 2008 Haim Michael. All Rights Reserved. 43

The Query String
client.DownloadFile(

"http://www.handango.com/catalog/ProductDetails.jsp",
"classicroulette.html");

System.Diagnostics.Process.Start("classicroulette.html");
}

}
}

}

http://www.handango.com/catalog/ProductDetails.jsp

05/16/10 © 2008 Haim Michael. All Rights Reserved. 44

The Query String

05/16/10 © 2008 Haim Michael. All Rights Reserved. 45

HTML Forms
Working with a WebClient object we can post data to HTML

forms. We can do that by calling the UploadValues method

on the WebClient object we work with.

The next sample uses the form at the following URL address:

http://www.abelski.com/courses/csharp/sumform.html.

http://www.abelski.com/courses/csharp/sumform.html

05/16/10 © 2008 Haim Michael. All Rights Reserved. 46

HTML Forms
using System;
using System.Net;
using System.IO;
using System.Threading;

namespace abelski.csharp
{

class WebFormsDemo
{

static void Main()
{

using(WebClient client = new WebClient())
{

System.Collections.Specialized.NameValueCollection collection =
new System.Collections.Specialized.NameValueCollection();

collection.Add("numA","43");
collection.Add("numB","22");

05/16/10 © 2008 Haim Michael. All Rights Reserved. 47

HTML Forms
client.Proxy = null;
byte[] result = client.UploadValues(

"http://www.abelski.com/courses/csharp/sumform.php",
"POST",collection);

System.IO.File.WriteAllBytes("results.html",result);
System.Diagnostics.Process.Start("results.html");

}
}

}
}

http://www.abelski.com/courses/csharp/sumform.php

05/16/10 © 2008 Haim Michael. All Rights Reserved. 48

HTML Forms

05/16/10 © 2008 Haim Michael. All Rights Reserved. 49

Cookies
By default, the HttpWebRequest object ignores the received

cookies. In order to accept cookies we should create a

CookieContainer object and assign it to the WebRequest

we work with.

05/16/10 © 2008 Haim Michael. All Rights Reserved. 50

Cookies
using System;
using System.Net;
using System.IO;
using System.Threading;

namespace abelski.csharp
{

class CookiesDemo
{

static void Main()
{

CookieContainer container = new CookieContainer();
HttpWebRequest request = (HttpWebRequest)WebRequest.Create(

 "http://www.bing.com");
request.Proxy = null;
request.CookieContainer = container;

05/16/10 © 2008 Haim Michael. All Rights Reserved. 51

Cookies
using(HttpWebResponse response =

(HttpWebResponse)request.GetResponse())
{

foreach(Cookie cookie in response.Cookies)
{

Console.WriteLine("name="+cookie.Name);
Console.WriteLine("value="+cookie.Value);
Console.WriteLine("path="+cookie.Path);
Console.WriteLine("domain="+cookie.Domain);
Console.WriteLine();

}
}

}
}

}

05/16/10 © 2008 Haim Michael. All Rights Reserved. 52

Cookies

05/16/10 © 2008 Haim Michael. All Rights Reserved. 53

Cookies
We can assign the received cookies to further requests we

send back.

We can do that by assigning the CookieContainer object to

each and every new WebRequest object we create.
...
request.CookieContainer = container;
...

05/16/10 © 2008 Haim Michael. All Rights Reserved. 54

Cookies
We can create a new cookie and add it to the

CookieContainer we want to send back to the server.
...
CookieContainer container = new CookieContainer();
Cookie cookie = new Cookie(“id”,”a2323fssd”,”/”,”.abelski.com”);
container.Add(cookie);
...

The CookieContainer can hold various cookies with

different domains and paths. The WebRequest object will send

back only those that match the path and domain of the URL it

refers to.

05/16/10 © 2008 Haim Michael. All Rights Reserved. 55

HTTP Server
We can develop our own HTTP server by using the

HttpListener class.

05/16/10 © 2008 Haim Michael. All Rights Reserved. 56

HTTP Server
using System;
using System.Net;
using System.IO;
using System.Threading;
using System.Text;

namespace abelski.csharp
{

class SimpleHttpServer
{

static void Main()
{

HttpListener listener = null;
try
{

listener = new HttpListener();
listener.Prefixes.Add(

 "http://localhost:1300/simpleserver/");
listener.Start();

05/16/10 © 2008 Haim Michael. All Rights Reserved. 57

HTTP Server
while(true)
{

Console.WriteLine("waiting...");
HttpListenerContext context = listener.GetContext();
string msg = "hello:)";
context.Response.StatusCode = (int)HttpStatusCode.OK;
using(Stream stream = context.Response.OutputStream)
{

using(StreamWriter writer = new StreamWriter(stream))
{

writer.Write(msg);
}

}
Console.WriteLine("msg sent...");

}

05/16/10 © 2008 Haim Michael. All Rights Reserved. 58

HTTP Server
}
catch(WebException e)
{

Console.WriteLine(e.Status);
}
finally
{

listener.Stop();
}

}
}

}

05/16/10 © 2008 Haim Michael. All Rights Reserved. 59

HTTP Server

05/16/10 © 2008 Haim Michael. All Rights Reserved. 60

FTP
We can use the WebClient class to develop FTP applications

both for uploading and for downloading data.

05/16/10 © 2008 Haim Michael. All Rights Reserved. 61

FTP
using System;
using System.Net;
using System.IO;
using System.Threading;
using System.Text;

namespace abelski.csharp
{

class SimpleFTPServer
{

static void Main()
{

using(WebClient client = new WebClient())
{

client.Proxy = null;
client.Credentials =

new NetworkCredential("_________","_________");
client.BaseAddress = "ftp://www.abelski.com/";
client.UploadString("temp.txt",

"hello. this is a try");
}

}
}

}

05/16/10 © 2008 Haim Michael. All Rights Reserved. 62

FTP
We can use the methods defined as string constants in

WebRequestMethods.FTP in order to perform various FTP

operations.
AppendFile PrintWorkingDirectory
DeleteFile RemoveDirectory
DownloadFile Rename
GetDateTimestamp UploadFile
GetFileSize UploadFileWithUniqueNmae
ListDirectory MakeDirectory
ListDirectoryDetails

05/16/10 © 2008 Haim Michael. All Rights Reserved. 63

FTP
In order to use these methods you should assign the method

string constant to the web request's Method property.

05/16/10 © 2008 Haim Michael. All Rights Reserved. 64

FTP
using System;
using System.Net;
using System.IO;
using System.Threading;
using System.Text;

namespace abelski.csharp
{

class FTPServerMethods
{

static void Main()
{

FtpWebRequest request = null;
FtpWebResponse respons = null;
StreamReader reader = null;
request = (FtpWebRequest)WebRequest.
 Create("ftp://www.abelski.com/abelski.com");
request.Proxy = null;
request.Credentials = new NetworkCredential(

"________","______");
request.Method = WebRequestMethods.Ftp.ListDirectory;

05/16/10 © 2008 Haim Michael. All Rights Reserved. 65

FTP
respons = (FtpWebResponse)request.GetResponse();
reader = new StreamReader(respons.GetResponseStream());
Console.WriteLine(reader.ReadToEnd());

}
}

}

05/16/10 © 2008 Haim Michael. All Rights Reserved. 66

FTP

05/16/10 © 2008 Haim Michael. All Rights Reserved. 67

The Dns Class

Using the Dns class we can interact with the Domain Name

Service (DNS) servers that convert between IP numbers (e.g.

20.110.208.104) and human friendly URL addresses (e.g.

www.abelski.com).

Calling the GetHostAddresses() static method we can

convert from a friendly URL address (domain name) to its IP

numbers.
In some cases, there are more than one IP number assigned for a specific domain

name.

http://www.abelski.com/

05/16/10 © 2008 Haim Michael. All Rights Reserved. 68

The Dns Class
using System;
using System.Net;

namespace abelski.csharp
{

class DNSDemo
{

static void Main()
{

string[] domains =
{"www.google.com","www.bing.com","www.abelski.com",
"www.xperato.com","www.zindell.com","www.jacado.com",

 "www.zindego.com","www.zuntel.com"};
foreach(string domain in domains)
{

Console.WriteLine(domain);
foreach(IPAddress ip in Dns.GetHostAddresses(domain))
{

Console.WriteLine(ip.ToString());
}
Console.WriteLine();

}
}

}
}

http://www.google.com/
http://www.xperato.com/

05/16/10 © 2008 Haim Michael. All Rights Reserved. 69

The Dns Class

05/16/10 © 2008 Haim Michael. All Rights Reserved. 70

The Dns Class

Calling the GetHostEntry static method we can convert from

an IP number to the domain name.

...
IPHostName host = Dns.GetHostEntry(“216.154.217.186”);
Console.WriteLine(host.HostName);
...

05/16/10 © 2008 Haim Michael. All Rights Reserved. 71

The Dns Class
using System;
using System.Net;
using System.IO;
using System.Threading;
using System.Text;

namespace abelski.csharp
{

class DNSAnotherDemo
{

static void Main()
{

string[] ips = {"209.85.135.106","199.238.166.245"};
foreach(string ip in ips)
{

Console.WriteLine(ip);
Console.WriteLine(Dns.GetHostEntry(ip).HostName);
Console.WriteLine();

}
}

}
}

05/16/10 © 2008 Haim Michael. All Rights Reserved. 72

The Dns Class

05/16/10 © 2008 Haim Michael. All Rights Reserved. 73

SMTP
The SmtpClient class enables us to send emails. The

MailMessage class encapsulates an email message.

Once SmtpClient is instantiated we should assign the SMTP

server to the Host property.

Once instantiating MailMessage we should assign the

required values to its various properties (Sender, From, To,

CC, Subject etc.).

05/16/10 © 2008 Haim Michael. All Rights Reserved. 74

SMTP
Sending attachments is done by instantiating the Attachment

class and passing over the reference of the new object to the

Add method we should call on the Attachments property of

the MailMessage object we are working with.

05/16/10 © 2008 Haim Michael. All Rights Reserved. 75

SMTP
...
SmtpClient client = new SmtpClient();
client.Host = "out.bezeqint.net";
MailMessage message = new MailMessage();
message.Sender = new MailAddress("david@jacado.com", "david");
message.From = new MailAddress("david@jacado.com","david");
message.To.Add(new MailAddress("haim.michael@gmail.com","haim"));
message.CC.Add(new MailAddress("haim.michael@zindell.com","michael"));
message.Subject = "Happy New Year!";
message.Body = "Happy New Year to you and your family:) See you soon.";
message.IsBodyHtml = false;
message.Priority = MailPriority.Low;
Attachment attachment = new
 Attachment("photo.jpg",System.Net.Mime.MediaTypeNames.Image.Jpeg);
message.Attachments.Add(attachment);
client.Send(message);
...

mailto:david@jacado.com
mailto:haim.michael@gmail.com
mailto:haim.michael@zindell.com

05/16/10 © 2008 Haim Michael. All Rights Reserved. 76

The TCP Protocol
The TCP (Transmission Content Protocol) protocol sets the

fundamental transport layer. Most of the available Internet

services are delivered on top of the TCP layer. HTTP, FTP,

SMTP are just few of them.

05/16/10 © 2008 Haim Michael. All Rights Reserved. 77

The TcpClient class facade the required underneath classes

and methods for connecting, sending data and receiving data

over the web in a synchronous blocking mode.

The TcpClient & TcpListener Classes

ProgramA ProgramB

TcpClient TcpClient

05/16/10 © 2008 Haim Michael. All Rights Reserved. 78

In order to get two programs connected with each other over

the web using the TCP/IP protocol we should first decide

which of the two programs should be executed first so it could

function as kind of a server waiting for a request to create a

connection with.

The TcpListener class provides simple methods that listen

for incoming request to connect and accept it. These methods

work synchronously with the thread that calls them.

The TcpClient & TcpListener Classes

05/16/10 © 2008 Haim Michael. All Rights Reserved. 79

The TcpClient & TcpListener Classes

using System;
using System.Net;
using System.IO;
using System.Threading;
using System.Text;
using System.Net.Mail;
using System.Net.Mime;
using System.Net.Sockets;

namespace abelski.csharp
{
 class TCPSimpleServer
 {
 static void Main()

{
 TcpListener listener = null;

TcpClient client = null;
NetworkStream stream = null;
BinaryWriter writer = null;
BinaryReader reader = null;

05/16/10 © 2008 Haim Michael. All Rights Reserved. 80

try
{
 listener = new TcpListener(

 new IPAddress(new byte[] {127,0,0,1}),1300);
 listener.Start();

 while (true)
 {

Console.WriteLine("waiting...");
 using (client = listener.AcceptTcpClient())
 {
 using (stream = client.GetStream())
 {
 string sent = "THREE";

reader = new BinaryReader(stream);
 String received = reader.ReadString();

if (received.Equals("1")) sent = "ONE";
 else if(received.Equals("2")) sent = "TWO";
 writer = new BinaryWriter(stream);

writer.Write(sent);
 }
 }
 }

}

The TcpClient & TcpListener Classes

05/16/10 © 2008 Haim Michael. All Rights Reserved. 81

catch(WebException e)
{

 Console.WriteLine(e.Message);
}

 finally
 {
 if(listener!=null) listener.Stop();

if(writer!=null) writer.Close();
if(reader!=null) reader.Close();

 }
}

 }
}

The TcpClient & TcpListener Classes

05/16/10 © 2008 Haim Michael. All Rights Reserved. 82

using System;
using System.Net;
using System.IO;
using System.Threading;
using System.Text;
using System.Net.Mail;
using System.Net.Mime;
using System.Net.Sockets;

namespace abelski.csharp
{
 class TCPSimpleClient
 {
 static void Main()

{
TcpClient client = null;
NetworkStream stream = null;
TcpListener listener = null;
BinaryWriter writer = null;
BinaryReader reader = null;

The TcpClient & TcpListener Classes

05/16/10 © 2008 Haim Michael. All Rights Reserved. 83

The TcpClient & TcpServer Classes

try
{

 using (client = new TcpClient("127.0.0.1",1300))
 {

Console.WriteLine("connection was established...");
 using (stream = client.GetStream())
 {
 string sent = "1";
 string received = null;

writer = new BinaryWriter(stream);
writer.Write(sent);
Console.WriteLine(sent+" was sent...");
reader = new BinaryReader(stream);
received = reader.ReadString();
Console.WriteLine(received+" was received...");

}
 }
 }

05/16/10 © 2008 Haim Michael. All Rights Reserved. 84

The TcpClient & TcpServer Classes

catch(WebException e)
{

 Console.WriteLine(e.Message);
}

 finally
 {
 if(listener!=null) listener.Stop();

if(writer!=null) writer.Close();
if(reader!=null) reader.Close();

 }
}

 }
}

05/16/10 © 2008 Haim Michael. All Rights Reserved. 85

The TcpClient & TcpServer Classes

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85

