
12/05/10 © 2008 Haim Michael. All Rights Reserved. 1

Asynchronous Methods

12/05/10 © 2008 Haim Michael. All Rights Reserved. 2

Introduction
Some of the classes in the .NET Framework Base Class

Library (BCL) provide both synchronous and asynchronous

method signatures.

Calling a synchronous method can create a delay in our

program flow.

Calling an asynchronous method might result in better

performance in cases such as when a program needs to send

out requests to multiple Web services.

12/05/10 © 2008 Haim Michael. All Rights Reserved. 3

Synchronous vs Asynchronous
When calling a synchronous method the execution waits for

the method to complete its execution before moving forward.

When calling an asynchronous method the execution returns

immediately so that the program can perform other operations

while the called method completes its work.

12/05/10 © 2008 Haim Michael. All Rights Reserved. 4

Multiple Threads Problem
When having a code that needs to be executed concurrently,

assigning a dedicated thread for each one of the executions

might consume a huge amount of memory.

In most cases, each one of the threads isn't always busy. In

most cases each thread consumes a fraction of the time it was

allocated with.

12/05/10 © 2008 Haim Michael. All Rights Reserved. 5

The Asynchronous Method Pattern
The asynchronous method pattern allows a handful of fully

utilized threads to take on thousands of concurrent executions.

If each and every thread is busy during its entire execution the

asynchronous method pattern wouldn't have been relevant.

12/05/10 © 2008 Haim Michael. All Rights Reserved. 6

Optimizing Threads Resources
The purpose of using asynchronous methods address isn't to

provide a convenient mechanism for executing methods

concurrently.

We use asynchronous methods in order to optimize thread

resources.

The asynchronous method aims at getting a situation in which

none of the threads is blocked. This way, all threads will be

exploited to their maximum potential.

12/05/10 © 2008 Haim Michael. All Rights Reserved. 7

The Web Request Case Study
When having a thread dedicated to processing a single web

request we might find it spending 99 percent of its time

blocked... waiting for the server to return its reply.

The asynchronous method pattern exploits this potential

allowing a handful of fully utilized threads to handle thousands

of concurrent jobs.

12/05/10 © 2008 Haim Michael. All Rights Reserved. 8

Defining Asynchronous Method
It is common to define an asynchronous method starting with

“Begin” and define a pairing method starting with “End”.

The signatures are as the following (convention):

IAsyncResult BeginXXX (in/ref_args,
AsyncCallback callback,
object state);

return_type EndXXX (out/ref_args,
IAsyncResult asyncResult);

The AsyncCallback is a delegate that represents a callback

method.

12/05/10 © 2008 Haim Michael. All Rights Reserved. 9

Defining Asynchronous Method
The BeginXXX method returns a reference for an

IAsyncResult object. This is the same reference that should

be passed over to the EndXXX method.

The last argument passed over to BeginXXX can be accessed

within the call back method by referring the AsyncState

property of the IAsyncResult object its reference is passed

over to that callback method.

public delegate void AsyncCallback (IAsyncResult ar);

12/05/10 © 2008 Haim Michael. All Rights Reserved. 10

Defining Asynchronous Method
Similarly to asynchronous delegates, the EndXXX method

allows the returned value to be retrieved as well as any

out/ref arguments.

12/05/10 © 2008 Haim Michael. All Rights Reserved. 11

Defining Asynchronous Method
Object of AsyncCallback type references a method to be

called when the corresponding asynchronous operation

completes.

IAsyncResult BeginXXX (in/ref_args,
AsyncCallback callback,
object state);

It is common to call the EndXXX method from within the

callback method.

12/05/10 © 2008 Haim Michael. All Rights Reserved. 12

Defining Asynchronous Method
public IAsyncResult BeginRead (byte[] buffer,

int offset,
 int size,
 AsyncCallback callback,
 object state);

public int EndRead (IAsyncResult asyncResult);

12/05/10 © 2008 Haim Michael. All Rights Reserved. 13

Asynchronous Delegates
Asynchronous methods are very similar to asynchronous

delegates.

Unlike asynchronous delegates that might block for any length

of time, calling an asynchronous method rarely ever blocks a

thread.

Calling the asynchronous method's Begin method might not

return back immediately to the caller. Calling the asynchronous

delegate's Begin method returns back immediately.

12/05/10 © 2008 Haim Michael. All Rights Reserved. 14

Asynchronous Delegates
While the purpose of using asynchronous delegates is to

execute a task in parallel with the caller thread, the purpose of

asynchronous methods is to allow a big number of tasks to run

on few threads.

While the asynchronous delegate has a built-in support within

the execution environment, the asynchronous method doesn't.

It is just an agreed protocol.

12/05/10 © 2008 Haim Michael. All Rights Reserved. 15

Asynchronous Delegates
Calling an asynchronous method from within an asynchronous

delegate won't get us anywhere. We will still have multiple

threads that aren't exploited efficiently.

12/05/10 © 2008 Haim Michael. All Rights Reserved. 16

Declaring Asynchronous Method
Declaring an asynchronous method means avoiding the

blocking I/O methods altogether and calling their

asynchronous counterparts instead.

12/05/10 © 2008 Haim Michael. All Rights Reserved. 17

Without Asynchronous Method
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading;
using System.Net;
using System.Net.Sockets;

namespace ConsoleApplication1
{
 class Program
 {
 public static void Main(string[] args)
 {
 ThreadPool.SetMinThreads(50, 50);
 IPAddress address = new IPAddress(new byte[] { 127, 0, 0, 1 });
 TcpListener listener = new TcpListener(address, 1400);
 listener.Start();
 while (true)
 {
 TcpClient client = listener.AcceptTcpClient();
 ThreadPool.QueueUserWorkItem(HandleRequest, client);
 //...
 }
 }

12/05/10 © 2008 Haim Michael. All Rights Reserved. 18

Without Asynchronous Method
 public static void HandleRequest(object ob)
 {
 using (TcpClient client = (TcpClient)ob)
 {
 using (NetworkStream ns = client.GetStream())
 {
 byte[] vec =new byte[10000];
 int temp = ns.Read(vec,0,10000); // BLOCK
 //...
 }
 }
 }
 }
}

12/05/10 © 2008 Haim Michael. All Rights Reserved. 19

Using Asynchronous Method
In order to scale to a big number of concurrent requests

without increasing the number of threads we should employ

the asynchronous method pattern.

Implementing the asynchronous method pattern means

avoiding the methods that block the I/O.

12/05/10 © 2008 Haim Michael. All Rights Reserved. 20

Using Asynchronous Method
class Program
{
 public static void Main(string[] args)
 {
 ThreadPool.SetMinThreads(50, 50);
 IPAddress address = new IPAddress(new byte[] { 127, 0, 0, 1 });
 TcpListener listener = new TcpListener(address, 1400);
 listener.Start();
 while (true)
 {
 TcpClient client = listener.AcceptTcpClient();
 ThreadPool.QueueUserWorkItem(HandleRequest, client);
 //...
 }
 }
 public static void HandleRequest(object ob)
 {
 new Handler().StartHandling((TcpClient)ob);
 }
}

12/05/10 © 2008 Haim Michael. All Rights Reserved. 21

Using Asynchronous Method
class Handler
{
 volatile TcpClient client;
 volatile NetworkStream stream;
 byte[] vec = new byte[10000];
 volatile int bytesRead = 0;

 internal void StartHandling(TcpClient c)
 {
 try
 {
 client = c;
 stream = c.GetStream();
 Read();
 }
 catch (Exception ex) {//..}
 }

 void Read() // NON BLOCKING READ
 {
 stream.BeginRead(vec,bytesRead,vec.Length-
 bytesRead,CallBackFunction,null);
 }

12/05/10 © 2008 Haim Michael. All Rights Reserved. 22

Using Asynchronous Method
 void CallBackFunction(IAsyncResult r)
 {
 try
 {
 int chunkSize = stream.EndRead(r);
 //...
 }
 //...

//cleaning up streams we used
 //...
 return;
 }
}

12/05/10 © 2008 Haim Michael. All Rights Reserved. 23

Using Asynchronous Method
Each client request is processed without calling any blocking

method.
The only method that might block a little is the AcceptTcpClient method. That

method might block for a short time when there aren't any clients reuqest. We

cannot avoid this small block.

12/05/10 © 2008 Haim Michael. All Rights Reserved. 24

Using Asynchronous Method
Developing asynchronous methods we are limited. We cannot

use every streaming type.
Not every class offers asynchronous versions for its methods. Most-likely we will find

ourselves limited working with lower level classes than what we would have hoped to

work with.

12/05/10 © 2008 Haim Michael. All Rights Reserved. 25

Sample
namespace client
{
 class Program
 {
 static void Main(string[] args)
 {
 Console.WriteLine("client start");
 Thread[] threads = new Thread[40];
 ConnectServer();
 }
 static void ConnectServer()
 {
 String temp = "abcdefghijklmnopqrstuvwxyz0123456789";
 String str = "";
 for (int i = 0; i < 10000; i++)
 {
 str += temp;
 }

client

code demoexplanation

http://www.youtube.com/watch?v=-g2ENINNoYk
http://www.youtube.com/watch?v=IV9FF9bL9aI

12/05/10 © 2008 Haim Michael. All Rights Reserved. 26

Sample
 for (int i = 0; i < 4000; i++)
 {
 using (TcpClient client = new TcpClient("127.0.0.1", 1300))
 {
 using (NetworkStream stream = client.GetStream())
 {
 BinaryWriter writer = new BinaryWriter(stream);
 writer.Write(str.ToCharArray());
 }
 }
 }
 }
 }
}

12/05/10 © 2008 Haim Michael. All Rights Reserved. 27

Sample
namespace ConsoleApplication20
{
 class Program
 {
 static void Main(string[] args)
 {
 Console.WriteLine("server start");
 new Server().Start(new IPAddress(new byte[] { 127, 0, 0, 1 }), 1300);
 }
 }

 public class Server
 {
 private static int index = 1;
 public void Start(IPAddress address, int port)
 {
 ThreadPool.SetMinThreads(20, 20);
 ThreadPool.SetMaxThreads(20, 20);
 TcpListener listener = new TcpListener(address, port);
 listener.Start();
 long start = 0, end = 0;

server

12/05/10 © 2008 Haim Michael. All Rights Reserved. 28

Sample
 for(int i=0; i<4000; i++)
 {
 TcpClient c = listener.AcceptTcpClient();
 Thread.Sleep(1);
 if (i % 1000 == 0) Console.WriteLine("i=" + i);
 if (i == 0)
 {
 start = DateTime.Now.Ticks;
 Console.WriteLine("start=" + start);
 }
 ThreadPool.QueueUserWorkItem(AsynchronousHandle, c);
 }
 end = DateTime.Now.Ticks;
 Console.WriteLine("end=" + end);
 Console.WriteLine("time="+ (end - start));
 }

12/05/10 © 2008 Haim Michael. All Rights Reserved. 29

Sample
 void SimpleHandle(object clientObject)
 {
 using (TcpClient client = (TcpClient)clientObject)
 {
 using (NetworkStream stream = client.GetStream())
 {
 byte[] data = new byte[360000];
 stream.Read(data, 0, 360000); // blocking
 Array.Sort(data);
 FileStream fs = new FileStream("__simple_"+ (++index)

+ DateTime.Now.Ticks + ".txt", FileMode.OpenOrCreate);
 fs.Write(data,0,data.Length);
 }
 }
 }
 void AsynchronousHandle(object clientObject)
 {
 using (TcpClient client = (TcpClient)clientObject)
 {
 using (NetworkStream stream = client.GetStream())
 {
 byte[] data = new byte[360000];
 stream.BeginRead(data, 0, 360000, ReadCallBack, data);
 }
 }
 }

12/05/10 © 2008 Haim Michael. All Rights Reserved. 30

Sample

 void ReadCallBack(IAsyncResult result)
 {
 Array.Sort((byte[])result.AsyncState);
 FileStream fs = new FileStream("__asynch_" + (++index)
 + DateTime.Now.Ticks + ".txt", FileMode.OpenOrCreate);
 byte[] data = (byte[])result.AsyncState;
 fs.BeginWrite(data, 0, data.Length, null, null);
 }
 }
}

www.LifeMichael.com 12/05/10

© 2008 Haim Michael. All Rights Reserved. 1

12/05/10 © 2008 Haim Michael. All Rights Reserved. 1

Asynchronous Methods

www.LifeMichael.com 12/05/10

© 2008 Haim Michael. All Rights Reserved. 2

12/05/10 © 2008 Haim Michael. All Rights Reserved. 2

Introduction
Some of the classes in the .NET Framework Base Class

Library (BCL) provide both synchronous and asynchronous

method signatures.

Calling a synchronous method can create a delay in our

program flow.

Calling an asynchronous method might result in better

performance in cases such as when a program needs to send

out requests to multiple Web services.

Using the asynchronous pattern doesn't guarantee each one of the executions to execute
parallel with the caller. If there is a need in a true parallel execution we better avoid using

asynchronous method and prefer using alternatives, such as using asynchronous
delegates or using the BackgroundWorker class.

www.LifeMichael.com 12/05/10

© 2008 Haim Michael. All Rights Reserved. 3

12/05/10 © 2008 Haim Michael. All Rights Reserved. 3

Synchronous vs Asynchronous
When calling a synchronous method the execution waits for

the method to complete its execution before moving forward.

When calling an asynchronous method the execution returns

immediately so that the program can perform other operations

while the called method completes its work.

Using the asynchronous pattern doesn't guarantee each one of the executions to execute
parallel with the caller. If there is a need in a true parallel execution we better avoid using

asynchronous method and prefer using alternatives, such as using asynchronous
delegates or using the BackgroundWorker class.

www.LifeMichael.com 12/05/10

© 2008 Haim Michael. All Rights Reserved. 4

12/05/10 © 2008 Haim Michael. All Rights Reserved. 4

Multiple Threads Problem
When having a code that needs to be executed concurrently,

assigning a dedicated thread for each one of the executions

might consume a huge amount of memory.

In most cases, each one of the threads isn't always busy. In

most cases each thread consumes a fraction of the time it was

allocated with.

Using the asynchronous pattern doesn't guarantee each one of the executions to execute
parallel with the caller. If there is a need in a true parallel execution we better avoid using

asynchronous method and prefer using alternatives, such as using asynchronous
delegates or using the BackgroundWorker class.

www.LifeMichael.com 12/05/10

© 2008 Haim Michael. All Rights Reserved. 5

12/05/10 © 2008 Haim Michael. All Rights Reserved. 5

The Asynchronous Method Pattern
The asynchronous method pattern allows a handful of fully

utilized threads to take on thousands of concurrent executions.

If each and every thread is busy during its entire execution the

asynchronous method pattern wouldn't have been relevant.

Using the asynchronous pattern doesn't guarantee each one of the executions to execute
parallel with the caller. If there is a need in a true parallel execution we better avoid using

asynchronous method and prefer using alternatives, such as using asynchronous
delegates or using the BackgroundWorker class.

www.LifeMichael.com 12/05/10

© 2008 Haim Michael. All Rights Reserved. 6

12/05/10 © 2008 Haim Michael. All Rights Reserved. 6

Optimizing Threads Resources
The purpose of using asynchronous methods address isn't to

provide a convenient mechanism for executing methods

concurrently.

We use asynchronous methods in order to optimize thread

resources.

The asynchronous method aims at getting a situation in which

none of the threads is blocked. This way, all threads will be

exploited to their maximum potential.

Declaring an asynchronous method we should abstain from calling any
blocking method. An asynchronous method aims never to block any thread.

www.LifeMichael.com 12/05/10

© 2008 Haim Michael. All Rights Reserved. 7

12/05/10 © 2008 Haim Michael. All Rights Reserved. 7

The Web Request Case Study
When having a thread dedicated to processing a single web

request we might find it spending 99 percent of its time

blocked... waiting for the server to return its reply.

The asynchronous method pattern exploits this potential

allowing a handful of fully utilized threads to handle thousands

of concurrent jobs.

Declaring an asynchronous method we should abstain from calling any
blocking method. An asynchronous method aims never to block any thread.

www.LifeMichael.com 12/05/10

© 2008 Haim Michael. All Rights Reserved. 8

12/05/10 © 2008 Haim Michael. All Rights Reserved. 8

Defining Asynchronous Method
It is common to define an asynchronous method starting with

“Begin” and define a pairing method starting with “End”.

The signatures are as the following (convention):

IAsyncResult BeginXXX (in/ref_args,
AsyncCallback callback,
object state);

return_type EndXXX (out/ref_args,
IAsyncResult asyncResult);

The AsyncCallback is a delegate that represents a callback

method.

www.LifeMichael.com 12/05/10

© 2008 Haim Michael. All Rights Reserved. 9

12/05/10 © 2008 Haim Michael. All Rights Reserved. 9

Defining Asynchronous Method
The BeginXXX method returns a reference for an

IAsyncResult object. This is the same reference that should

be passed over to the EndXXX method.

The last argument passed over to BeginXXX can be accessed

within the call back method by referring the AsyncState

property of the IAsyncResult object its reference is passed

over to that callback method.

public delegate void AsyncCallback (IAsyncResult ar);

www.LifeMichael.com 12/05/10

© 2008 Haim Michael. All Rights Reserved. 10

12/05/10 © 2008 Haim Michael. All Rights Reserved. 10

Defining Asynchronous Method
Similarly to asynchronous delegates, the EndXXX method

allows the returned value to be retrieved as well as any

out/ref arguments.

www.LifeMichael.com 12/05/10

© 2008 Haim Michael. All Rights Reserved. 11

12/05/10 © 2008 Haim Michael. All Rights Reserved. 11

Defining Asynchronous Method
Object of AsyncCallback type references a method to be

called when the corresponding asynchronous operation

completes.

IAsyncResult BeginXXX (in/ref_args,
AsyncCallback callback,
object state);

It is common to call the EndXXX method from within the

callback method.

www.LifeMichael.com 12/05/10

© 2008 Haim Michael. All Rights Reserved. 12

12/05/10 © 2008 Haim Michael. All Rights Reserved. 12

Defining Asynchronous Method
public IAsyncResult BeginRead (byte[] buffer,

int offset,
 int size,
 AsyncCallback callback,
 object state);

public int EndRead (IAsyncResult asyncResult);

www.LifeMichael.com 12/05/10

© 2008 Haim Michael. All Rights Reserved. 13

12/05/10 © 2008 Haim Michael. All Rights Reserved. 13

Asynchronous Delegates
Asynchronous methods are very similar to asynchronous

delegates.

Unlike asynchronous delegates that might block for any length

of time, calling an asynchronous method rarely ever blocks a

thread.

Calling the asynchronous method's Begin method might not

return back immediately to the caller. Calling the asynchronous

delegate's Begin method returns back immediately.

www.LifeMichael.com 12/05/10

© 2008 Haim Michael. All Rights Reserved. 14

12/05/10 © 2008 Haim Michael. All Rights Reserved. 14

Asynchronous Delegates
While the purpose of using asynchronous delegates is to

execute a task in parallel with the caller thread, the purpose of

asynchronous methods is to allow a big number of tasks to run

on few threads.

While the asynchronous delegate has a built-in support within

the execution environment, the asynchronous method doesn't.

It is just an agreed protocol.

www.LifeMichael.com 12/05/10

© 2008 Haim Michael. All Rights Reserved. 15

12/05/10 © 2008 Haim Michael. All Rights Reserved. 15

Asynchronous Delegates
Calling an asynchronous method from within an asynchronous

delegate won't get us anywhere. We will still have multiple

threads that aren't exploited efficiently.

www.LifeMichael.com 12/05/10

© 2008 Haim Michael. All Rights Reserved. 16

12/05/10 © 2008 Haim Michael. All Rights Reserved. 16

Declaring Asynchronous Method
Declaring an asynchronous method means avoiding the

blocking I/O methods altogether and calling their

asynchronous counterparts instead.

www.LifeMichael.com 12/05/10

© 2008 Haim Michael. All Rights Reserved. 17

12/05/10 © 2008 Haim Michael. All Rights Reserved. 17

Without Asynchronous Method
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading;
using System.Net;
using System.Net.Sockets;

namespace ConsoleApplication1
{
 class Program
 {
 public static void Main(string[] args)
 {
 ThreadPool.SetMinThreads(50, 50);
 IPAddress address = new IPAddress(new byte[] { 127, 0, 0, 1 });
 TcpListener listener = new TcpListener(address, 1400);
 listener.Start();
 while (true)
 {
 TcpClient client = listener.AcceptTcpClient();
 ThreadPool.QueueUserWorkItem(HandleRequest, client);
 //...
 }
 }

www.LifeMichael.com 12/05/10

© 2008 Haim Michael. All Rights Reserved. 18

12/05/10 © 2008 Haim Michael. All Rights Reserved. 18

Without Asynchronous Method
 public static void HandleRequest(object ob)
 {
 using (TcpClient client = (TcpClient)ob)
 {
 using (NetworkStream ns = client.GetStream())
 {
 byte[] vec =new byte[10000];
 int temp = ns.Read(vec,0,10000); // BLOCK
 //...
 }
 }
 }
 }
}

www.LifeMichael.com 12/05/10

© 2008 Haim Michael. All Rights Reserved. 19

12/05/10 © 2008 Haim Michael. All Rights Reserved. 19

Using Asynchronous Method
In order to scale to a big number of concurrent requests

without increasing the number of threads we should employ

the asynchronous method pattern.

Implementing the asynchronous method pattern means

avoiding the methods that block the I/O.

www.LifeMichael.com 12/05/10

© 2008 Haim Michael. All Rights Reserved. 20

12/05/10 © 2008 Haim Michael. All Rights Reserved. 20

Using Asynchronous Method
class Program
{
 public static void Main(string[] args)
 {
 ThreadPool.SetMinThreads(50, 50);
 IPAddress address = new IPAddress(new byte[] { 127, 0, 0, 1 });
 TcpListener listener = new TcpListener(address, 1400);
 listener.Start();
 while (true)
 {
 TcpClient client = listener.AcceptTcpClient();
 ThreadPool.QueueUserWorkItem(HandleRequest, client);
 //...
 }
 }
 public static void HandleRequest(object ob)
 {
 new Handler().StartHandling((TcpClient)ob);
 }
}

www.LifeMichael.com 12/05/10

© 2008 Haim Michael. All Rights Reserved. 21

12/05/10 © 2008 Haim Michael. All Rights Reserved. 21

Using Asynchronous Method
class Handler
{
 volatile TcpClient client;
 volatile NetworkStream stream;
 byte[] vec = new byte[10000];
 volatile int bytesRead = 0;

 internal void StartHandling(TcpClient c)
 {
 try
 {
 client = c;
 stream = c.GetStream();
 Read();
 }
 catch (Exception ex) {//..}
 }

 void Read() // NON BLOCKING READ
 {
 stream.BeginRead(vec,bytesRead,vec.Length-
 bytesRead,CallBackFunction,null);
 }

www.LifeMichael.com 12/05/10

© 2008 Haim Michael. All Rights Reserved. 22

12/05/10 © 2008 Haim Michael. All Rights Reserved. 22

Using Asynchronous Method
 void CallBackFunction(IAsyncResult r)
 {
 try
 {
 int chunkSize = stream.EndRead(r);
 //...
 }
 //...

//cleaning up streams we used
 //...
 return;
 }
}

www.LifeMichael.com 12/05/10

© 2008 Haim Michael. All Rights Reserved. 23

12/05/10 © 2008 Haim Michael. All Rights Reserved. 23

Using Asynchronous Method
Each client request is processed without calling any blocking

method.
The only method that might block a little is the AcceptTcpClient method. That

method might block for a short time when there aren't any clients reuqest. We

cannot avoid this small block.

www.LifeMichael.com 12/05/10

© 2008 Haim Michael. All Rights Reserved. 24

12/05/10 © 2008 Haim Michael. All Rights Reserved. 24

Using Asynchronous Method
Developing asynchronous methods we are limited. We cannot

use every streaming type.
Not every class offers asynchronous versions for its methods. Most-likely we will find

ourselves limited working with lower level classes than what we would have hoped to

work with.

www.LifeMichael.com 12/05/10

© 2008 Haim Michael. All Rights Reserved. 25

12/05/10 © 2008 Haim Michael. All Rights Reserved. 25

Sample
namespace client
{
 class Program
 {
 static void Main(string[] args)
 {
 Console.WriteLine("client start");
 Thread[] threads = new Thread[40];
 ConnectServer();
 }
 static void ConnectServer()
 {
 String temp = "abcdefghijklmnopqrstuvwxyz0123456789";
 String str = "";
 for (int i = 0; i < 10000; i++)
 {
 str += temp;
 }

client

code demoexplanation

www.LifeMichael.com 12/05/10

© 2008 Haim Michael. All Rights Reserved. 26

12/05/10 © 2008 Haim Michael. All Rights Reserved. 26

Sample
 for (int i = 0; i < 4000; i++)
 {
 using (TcpClient client = new TcpClient("127.0.0.1", 1300))
 {
 using (NetworkStream stream = client.GetStream())
 {
 BinaryWriter writer = new BinaryWriter(stream);
 writer.Write(str.ToCharArray());
 }
 }
 }
 }
 }
}

www.LifeMichael.com 12/05/10

© 2008 Haim Michael. All Rights Reserved. 27

12/05/10 © 2008 Haim Michael. All Rights Reserved. 27

Sample
namespace ConsoleApplication20
{
 class Program
 {
 static void Main(string[] args)
 {
 Console.WriteLine("server start");
 new Server().Start(new IPAddress(new byte[] { 127, 0, 0, 1 }), 1300);
 }
 }

 public class Server
 {
 private static int index = 1;
 public void Start(IPAddress address, int port)
 {
 ThreadPool.SetMinThreads(20, 20);
 ThreadPool.SetMaxThreads(20, 20);
 TcpListener listener = new TcpListener(address, port);
 listener.Start();
 long start = 0, end = 0;

server

www.LifeMichael.com 12/05/10

© 2008 Haim Michael. All Rights Reserved. 28

12/05/10 © 2008 Haim Michael. All Rights Reserved. 28

Sample
 for(int i=0; i<4000; i++)
 {
 TcpClient c = listener.AcceptTcpClient();
 Thread.Sleep(1);
 if (i % 1000 == 0) Console.WriteLine("i=" + i);
 if (i == 0)
 {
 start = DateTime.Now.Ticks;
 Console.WriteLine("start=" + start);
 }
 ThreadPool.QueueUserWorkItem(AsynchronousHandle, c);
 }
 end = DateTime.Now.Ticks;
 Console.WriteLine("end=" + end);
 Console.WriteLine("time="+ (end - start));
 }

www.LifeMichael.com 12/05/10

© 2008 Haim Michael. All Rights Reserved. 29

12/05/10 © 2008 Haim Michael. All Rights Reserved. 29

Sample
 void SimpleHandle(object clientObject)
 {
 using (TcpClient client = (TcpClient)clientObject)
 {
 using (NetworkStream stream = client.GetStream())
 {
 byte[] data = new byte[360000];
 stream.Read(data, 0, 360000); // blocking
 Array.Sort(data);
 FileStream fs = new FileStream("__simple_"+ (++index)

+ DateTime.Now.Ticks + ".txt", FileMode.OpenOrCreate);
 fs.Write(data,0,data.Length);
 }
 }
 }
 void AsynchronousHandle(object clientObject)
 {
 using (TcpClient client = (TcpClient)clientObject)
 {
 using (NetworkStream stream = client.GetStream())
 {
 byte[] data = new byte[360000];
 stream.BeginRead(data, 0, 360000, ReadCallBack, data);
 }
 }
 }

www.LifeMichael.com 12/05/10

© 2008 Haim Michael. All Rights Reserved. 30

12/05/10 © 2008 Haim Michael. All Rights Reserved. 30

Sample

 void ReadCallBack(IAsyncResult result)
 {
 Array.Sort((byte[])result.AsyncState);
 FileStream fs = new FileStream("__asynch_" + (++index)
 + DateTime.Now.Ticks + ".txt", FileMode.OpenOrCreate);
 byte[] data = (byte[])result.AsyncState;
 fs.BeginWrite(data, 0, data.Length, null, null);
 }
 }
}

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30

