
 (c) 2011 Haim Michael. All Rights Reserved.

Design

 (c) 2011 Haim Michael. All Rights Reserved.

Introduction
● The design of a software system is the specification of the

architecture that will be implemented in its code in order to fulfil

the functional and the performance requirements.

● It is highly important to complete the design before we start

coding.

● Each programming language has its own characteristics. The

design should utilize the characteristics of the programming

language we intend to use.

 (c) 2011 Haim Michael. All Rights Reserved.

Abstraction
● Coding our program while using classes without knowing the

exact implementation will simplify our work.

● Define abstract classes will allow us an higher level of

abstraction.

 (c) 2011 Haim Michael. All Rights Reserved.

Reuse
● Taking into consideration existing code and reusing it when

appropriate.

● Writing reusable code will enable us to code shorter programs

and simpler to maintain.

 (c) 2011 Haim Michael. All Rights Reserved.

First Steps
● Doing our first steps designing a software system it would be

useful to start with dividing our software system into sub

systems.

● For each sub system it would be useful to follow with choosing

its threading model, specifying its classes, structures and

algorithms.

 (c) 2011 Haim Michael. All Rights Reserved.

Object Orietned Perspective
● In case that you are not familiar with object oriented

programming it is highly important making the effort and

conceive the system with an object oriented perspective and

ensure that you don't mistakenly think procedural.

● If you are not familiar with object oriented programming try to

think in terms of classes, properties, behaviors and

components.

 (c) 2011 Haim Michael. All Rights Reserved.

Overobjectification
● There is often a fine line between a proper and a creative object

oriented system and an annoying one. Turning each and every

little thing into an object might be annoying.

 (c) 2011 Haim Michael. All Rights Reserved.

The Has-A Relationship
● When objects engaged in a has-a (aggregation) relationship we

can envisionone object as part of another.

Car Wheel

The Car Has a Wheel

 (c) 2011 Haim Michael. All Rights Reserved.

The Is-A Relationship
● When objects engaged in a is-a (inheritance) relationship we

can envision one object as if it is like the other. We can

conceive the class from which the

first object was instantiated as one

that extends the other one. Car

SportCar

The SportCar is a Car

 (c) 2011 Haim Michael. All Rights Reserved.

Multiple Inheritance
● Unlike Java and C#, the C++ programming language allows us

to maintain multiple inheritances.

● We better avoid multiple inheritance as it might cause

complexities and might damage the clarity of our program.

 (c) 2011 Haim Michael. All Rights Reserved.

Abstract Class
● The C++ programming language doesn't allow us to define

interfaces as Java and C#. Instead, we should define abstract

classes from which the concrete ones will inherit.

● This way we can achieve a clear separation between the

interface and the implementation.

 (c) 2011 Haim Michael. All Rights Reserved.

Reusing Code
● When reusing code there are more than a few issues to take

into consideration. Is the code safe for multithreading? Are

there any specific initializations or cleanups? Are there other

libraries the code depends on?

 (c) 2011 Haim Michael. All Rights Reserved.

The Big-O Notation
● The Big-O notation specifies a relative performance assesment.

It doesn't provide us with an absolute measurement.

● Knowing the Big-O assesment for the third party library we

choose we can pick the right one for our program needs.

 (c) 2011 Haim Michael. All Rights Reserved.

Open Source Libraries
● The use of open source libraries has become tremendeously

popular during the last years.

● When using open source libraries make an effort to stick with

the "freedom" philosophy.

 (c) 2011 Haim Michael. All Rights Reserved.

The C++ Standard Library
● Mostlikely this is the most important library in use when coding

in C++.

● This library is part of the C++ standard. We can find it within

every standard compiler.

● The STL provides an implementation for a range of generic

algorithms, such as the search and the sorting algorithms.

 (c) 2011 Haim Michael. All Rights Reserved.

Design Techniques
● A design technique is a standard approach for solving particular

problems in C++.

The smart pointers is one of the most common design techniques. Smart pointer is

an object that contains a pointer. The smart pointer is allocated on the stack so that

once it goes out of scope its destructor takes care of deleting the contained pointer.

 (c) 2011 Haim Michael. All Rights Reserved.

Design Patterns
● A design pattern is a standard approach for solving a general

problem.

● Comparing with design techniues, the design patterns are less

language specific.

 (c) 2011 Haim Michael. All Rights Reserved.

Software Life Cycle Models
● The need for a formalized process yields several different

approaches.

● The most popular of them include the following: Stagewise

Model, Waterfall Model and the Spiral Method.

 (c) 2011 Haim Michael. All Rights Reserved.

Software Engineering Methodologies
● The software engineering methodologies provide practical rules

of thumb for professional software development.

 (c) 2011 Haim Michael. All Rights Reserved.

Coding with Style
● It isn't just about coding. It is important that our work will look

good.

● Keep the code clear and understandable. Make sure your code

includes proper comments and documentation. Select good

names in according with the conventions in your work.

● Use constants when possible. It will ease the maintenance of

your code in the long run.

 (c) 2011 Haim Michael. All Rights Reserved.

Coding with Style
● Whenever a statement is required (e.g. condition statements)

prefer using a compound statement, even when a simple one is

sufficient.

...
if(num>100)
{

std::cout << "do this... do that...";
}
...

http://www.youtube.com/watch?v=Y0kLyHEeGno

(c) 2011 Haim Michael. All Rights Reserved. 02/05/11

(c) 2011 Haim Michael. All Rights Reserved. 1

 (c) 2011 Haim Michael. All Rights Reserved. 1

Design

(c) 2011 Haim Michael. All Rights Reserved. 02/05/11

(c) 2011 Haim Michael. All Rights Reserved. 2

 (c) 2011 Haim Michael. All Rights Reserved. 2

Introduction
● The design of a software system is the specification of the

architecture that will be implemented in its code in order to fulfil

the functional and the performance requirements.

● It is highly important to complete the design before we start

coding.

● Each programming language has its own characteristics. The

design should utilize the characteristics of the programming

language we intend to use.

(c) 2011 Haim Michael. All Rights Reserved. 02/05/11

(c) 2011 Haim Michael. All Rights Reserved. 3

 (c) 2011 Haim Michael. All Rights Reserved. 3

Abstraction
● Coding our program while using classes without knowing the

exact implementation will simplify our work.

● Define abstract classes will allow us an higher level of

abstraction.

(c) 2011 Haim Michael. All Rights Reserved. 02/05/11

(c) 2011 Haim Michael. All Rights Reserved. 4

 (c) 2011 Haim Michael. All Rights Reserved. 4

Reuse
● Taking into consideration existing code and reusing it when

appropriate.

● Writing reusable code will enable us to code shorter programs

and simpler to maintain.

(c) 2011 Haim Michael. All Rights Reserved. 02/05/11

(c) 2011 Haim Michael. All Rights Reserved. 5

 (c) 2011 Haim Michael. All Rights Reserved. 5

First Steps
● Doing our first steps designing a software system it would be

useful to start with dividing our software system into sub

systems.

● For each sub system it would be useful to follow with choosing

its threading model, specifying its classes, structures and

algorithms.

(c) 2011 Haim Michael. All Rights Reserved. 02/05/11

(c) 2011 Haim Michael. All Rights Reserved. 6

 (c) 2011 Haim Michael. All Rights Reserved. 6

Object Orietned Perspective
● In case that you are not familiar with object oriented

programming it is highly important making the effort and

conceive the system with an object oriented perspective and

ensure that you don't mistakenly think procedural.

● If you are not familiar with object oriented programming try to

think in terms of classes, properties, behaviors and

components.

(c) 2011 Haim Michael. All Rights Reserved. 02/05/11

(c) 2011 Haim Michael. All Rights Reserved. 7

 (c) 2011 Haim Michael. All Rights Reserved. 7

Overobjectification
● There is often a fine line between a proper and a creative object

oriented system and an annoying one. Turning each and every

little thing into an object might be annoying.

(c) 2011 Haim Michael. All Rights Reserved. 02/05/11

(c) 2011 Haim Michael. All Rights Reserved. 8

 (c) 2011 Haim Michael. All Rights Reserved. 8

The Has-A Relationship
● When objects engaged in a has-a (aggregation) relationship we

can envisionone object as part of another.

Car Wheel

The Car Has a Wheel

(c) 2011 Haim Michael. All Rights Reserved. 02/05/11

(c) 2011 Haim Michael. All Rights Reserved. 9

 (c) 2011 Haim Michael. All Rights Reserved. 9

The Is-A Relationship
● When objects engaged in a is-a (inheritance) relationship we

can envision one object as if it is like the other. We can

conceive the class from which the

first object was instantiated as one

that extends the other one. Car

SportCar

The SportCar is a Car

(c) 2011 Haim Michael. All Rights Reserved. 02/05/11

(c) 2011 Haim Michael. All Rights Reserved. 10

 (c) 2011 Haim Michael. All Rights Reserved. 10

Multiple Inheritance
● Unlike Java and C#, the C++ programming language allows us

to maintain multiple inheritances.

● We better avoid multiple inheritance as it might cause

complexities and might damage the clarity of our program.

(c) 2011 Haim Michael. All Rights Reserved. 02/05/11

(c) 2011 Haim Michael. All Rights Reserved. 11

 (c) 2011 Haim Michael. All Rights Reserved. 11

Abstract Class
● The C++ programming language doesn't allow us to define

interfaces as Java and C#. Instead, we should define abstract

classes from which the concrete ones will inherit.

● This way we can achieve a clear separation between the

interface and the implementation.

(c) 2011 Haim Michael. All Rights Reserved. 02/05/11

(c) 2011 Haim Michael. All Rights Reserved. 12

 (c) 2011 Haim Michael. All Rights Reserved. 12

Reusing Code
● When reusing code there are more than a few issues to take

into consideration. Is the code safe for multithreading? Are

there any specific initializations or cleanups? Are there other

libraries the code depends on?

(c) 2011 Haim Michael. All Rights Reserved. 02/05/11

(c) 2011 Haim Michael. All Rights Reserved. 13

 (c) 2011 Haim Michael. All Rights Reserved. 13

The Big-O Notation
● The Big-O notation specifies a relative performance assesment.

It doesn't provide us with an absolute measurement.

● Knowing the Big-O assesment for the third party library we

choose we can pick the right one for our program needs.

(c) 2011 Haim Michael. All Rights Reserved. 02/05/11

(c) 2011 Haim Michael. All Rights Reserved. 14

 (c) 2011 Haim Michael. All Rights Reserved. 14

Open Source Libraries
● The use of open source libraries has become tremendeously

popular during the last years.

● When using open source libraries make an effort to stick with

the "freedom" philosophy.

(c) 2011 Haim Michael. All Rights Reserved. 02/05/11

(c) 2011 Haim Michael. All Rights Reserved. 15

 (c) 2011 Haim Michael. All Rights Reserved. 15

The C++ Standard Library
● Mostlikely this is the most important library in use when coding

in C++.

● This library is part of the C++ standard. We can find it within

every standard compiler.

● The STL provides an implementation for a range of generic

algorithms, such as the search and the sorting algorithms.

(c) 2011 Haim Michael. All Rights Reserved. 02/05/11

(c) 2011 Haim Michael. All Rights Reserved. 16

 (c) 2011 Haim Michael. All Rights Reserved. 16

Design Techniques
● A design technique is a standard approach for solving particular

problems in C++.

The smart pointers is one of the most common design techniques. Smart pointer is

an object that contains a pointer. The smart pointer is allocated on the stack so that

once it goes out of scope its destructor takes care of deleting the contained pointer.

(c) 2011 Haim Michael. All Rights Reserved. 02/05/11

(c) 2011 Haim Michael. All Rights Reserved. 17

 (c) 2011 Haim Michael. All Rights Reserved. 17

Design Patterns
● A design pattern is a standard approach for solving a general

problem.

● Comparing with design techniues, the design patterns are less

language specific.

(c) 2011 Haim Michael. All Rights Reserved. 02/05/11

(c) 2011 Haim Michael. All Rights Reserved. 18

 (c) 2011 Haim Michael. All Rights Reserved. 18

Software Life Cycle Models
● The need for a formalized process yields several different

approaches.

● The most popular of them include the following: Stagewise

Model, Waterfall Model and the Spiral Method.

(c) 2011 Haim Michael. All Rights Reserved. 02/05/11

(c) 2011 Haim Michael. All Rights Reserved. 19

 (c) 2011 Haim Michael. All Rights Reserved. 19

Software Engineering Methodologies
● The software engineering methodologies provide practical rules

of thumb for professional software development.

(c) 2011 Haim Michael. All Rights Reserved. 02/05/11

(c) 2011 Haim Michael. All Rights Reserved. 20

 (c) 2011 Haim Michael. All Rights Reserved. 20

Coding with Style
● It isn't just about coding. It is important that our work will look

good.

● Keep the code clear and understandable. Make sure your code

includes proper comments and documentation. Select good

names in according with the conventions in your work.

● Use constants when possible. It will ease the maintenance of

your code in the long run.

(c) 2011 Haim Michael. All Rights Reserved. 02/05/11

(c) 2011 Haim Michael. All Rights Reserved. 21

 (c) 2011 Haim Michael. All Rights Reserved. 21

Coding with Style
● Whenever a statement is required (e.g. condition statements)

prefer using a compound statement, even when a simple one is

sufficient.

...
if(num>100)
{

std::cout << "do this... do that...";
}
...

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

