
 (c) 2011 Haim Michael. All Rights Reserved.

Classes

 (c) 2011 Haim Michael. All Rights Reserved.

Introduction
● The definition of a new class in C++ includes two steps. We first

need to declare about the it and then we need to define it.

● The declaration about the class methods and members is done

in a separated file, also known as the hearder file. Its extension

is h.

● The definition is done in a source code file. Its extension is cpp.

 (c) 2011 Haim Michael. All Rights Reserved.

Class Declaration
● The class declaration is placed within a header file. The

extension should be h. We should terminate the declaration

with a semicolon.

 (c) 2011 Haim Michael. All Rights Reserved.

Class Declaration

class Rectangle
{
public:
 Rectangle();
 Rectangle(double w, double h);
 double area();
 void setWidth(double w);
 void setHeight(double h);
 double getWidth();
 double getHeight();
private:
 double width;
 double height;
};

 (c) 2011 Haim Michael. All Rights Reserved.

Class Definition
● The class definition is placed within a source code file. The

extension should be cpp.

 (c) 2011 Haim Michael. All Rights Reserved.

Class Definition

#include "rectangle.h"

Rectangle::Rectangle()
{
 setWidth(0);
 setHeight(0);
}

void Rectangle::setHeight(double h)
{
 if(h>0)
 {
 height = h;
 }
}

 (c) 2011 Haim Michael. All Rights Reserved.

Class Definition
void Rectangle::setWidth(double w)
{
 if(w>0)
 {
 width = w;
 }
}

double Rectangle::getWidth()
{
 return width;
}

double Rectangle::getHeight()
{
 return height;
}

double Rectangle::area()
{
 return getWidth()*getHeight();
}

 (c) 2011 Haim Michael. All Rights Reserved.

Class Instantiating
● Unlike Java and C#, when declaring a class type variable the

variable itself is already an object.
...
Rectangle rec;
rec.setWidth(4);
rec.setHeight(3);
std::cout << rec.area();
...

 (c) 2011 Haim Michael. All Rights Reserved.

Class Instantiating
● We can use the new operator for creating a new object of our

class. Calling new returns the address of the new object. We

can assign the address to a pointer type variable.
...
Rectangle* rec;
rec = new Rectangle();
...

 (c) 2011 Haim Michael. All Rights Reserved.

Class Instantiating
● Working with an object that was instantiated using new we

should use the -> (arrow) operator.
...
Rectangle* rec;
rec = new Rectangle();
rec->setWidth(4);
rec->setHeight(3);
std::cout << rec->area();
...

 (c) 2011 Haim Michael. All Rights Reserved.

Class Instantiating

#include <iostream>
#include "stdio.h"
#include "rectangle.h"

int main(int argc, char *argv[])
{
 Rectangle obA;
 obA.setWidth(4);
 obA.setHeight(3);
 std::cout << obA.area() << std::endl;
 Rectangle* obB;
 obB = new Rectangle();
 obB->setWidth(4);
 obB->setHeight(3);
 std::cout << obB->area() << std::endl;
 getchar();
 return 0;
}

http://www.youtube.com/watch?v=asX9s4OI5Dw

 (c) 2011 Haim Michael. All Rights Reserved.

Access Control
● Each and every method and each and every member in our

class is subject to one of the three possible access specifiers:

public, protected or private.

● Unlike Java and C#, when specifying an access specifier it

applies all methods and all members declaration that follows it.

Unlike Java and C# we don't need to place separated access

specifiers for each and every method or member.

 (c) 2011 Haim Michael. All Rights Reserved.

Access Control
● The default access specifier is private. Each and ever

method as well as each and every member their declaration is

before the first access specifier shall have the private access

specifier.

● C++ allows us to define methods both in classes and in structs.

Unlike a class, the default access specifier for a struct is

public.

 (c) 2011 Haim Michael. All Rights Reserved.

Access Control
● We place the access specifiers within the declaration in the

header file only. We don't need to repeat it within the source

code file, where the implementation resides.

 (c) 2011 Haim Michael. All Rights Reserved.

The public Access Specifier
● Any code can call a public method or access a public

member.

● We will define public methods when we want to allow any

code the possibility to call them.

● We will define public members when we want to allow any

code a direct access to them.

 (c) 2011 Haim Michael. All Rights Reserved.

The private Access Specifier
● Only methods that belong to the same class where the

private member was declared can access that member. Only

methods that belong to the same class where the private

method was declared can call it.

● We will define private methods and private members

when we want to restrict their accessibility.

 (c) 2011 Haim Michael. All Rights Reserved.

The protected Access Specifier
● Only methods that belong to the same class where the

protected member was declared or belong to a class that

inherit it can access that member. Only methods that belong to

the same class where the protected method was declared or

belong to a class that inherit it can call it.

● We will define protected methods and protected members

when we want to restrict their accessibility to the very same

class they belong to as well as to other classes that inherit it.

 (c) 2011 Haim Michael. All Rights Reserved.

Code Clarity
● It is a good practice to group the declaration into groups in the

following order: public, protected and private.

class NameOfOurClass
{

public:
//methods declaration
//members declaration

protected:
//methods declaration
//members declaration

private:
//methods declaration
//members declaration

}

 (c) 2011 Haim Michael. All Rights Reserved.

Calling Other Methods
● We can call methods from within the code of other methods in

the same class.
...
double Rectangle::area()
{
 return getWidth()*getHeight();
}
...

 (c) 2011 Haim Michael. All Rights Reserved.

The this Pointer
● Each method call passes a pointer to the object on which it was

called. This pointer is passed as a hidden parameter. The name

of this hidden parameter is this.
...
void Rectangle::setWidth(double wVal)
{
 if(wVal>0)

{
this->width = wVal;

}
}
...

 (c) 2011 Haim Michael. All Rights Reserved.

The this Pointer

class Rectangle
{
public:
 Rectangle();
 Rectangle(double w, double h);
 double area();
 void setWidth(double w);
 void setHeight(double h);
 double getWidth();
 double getHeight();
private:
 double width;
 double height;
};

 (c) 2011 Haim Michael. All Rights Reserved.

The this Pointer

#include "rectangle.h"

Rectangle::Rectangle()
{
 this->setWidth(0);
 this->setHeight(0);
}

void Rectangle::setHeight(double h)
{
 if(h>0)
 {
 this->height = h;
 }
}

 (c) 2011 Haim Michael. All Rights Reserved.

The this Pointer
void Rectangle::setWidth(double w)
{
 if(w>0)
 {
 this->width = w;
 }
}

double Rectangle::getWidth()
{
 return this->width;
}

double Rectangle::getHeight()
{
 return this->height;
}

double Rectangle::area()
{
 return this->getWidth()*this->getHeight();
}

 (c) 2011 Haim Michael. All Rights Reserved.

The this Pointer

#include <iostream>
#include "stdio.h"
#include "rectangle.h"

int main(int argc, char *argv[])
{
 Rectangle* ob;
 ob = new Rectangle();
 ob->setWidth(4);
 ob->setHeight(3);
 std::cout << ob->area() << std::endl;
 getchar();
 return 0;
}

http://www.youtube.com/watch?v=83vekf4sOyk

 (c) 2011 Haim Michael. All Rights Reserved.

Objects on The Stack
● Declaring a simple class type variable will indirectly instantiate

that class. The variable will actually be an object of that class.

● We will use the . (dot) operator for accessing the object

members and for calling methods on it.
...
Rectangle rec;
rec.setWidth(4);
rec.setHeight(3);
std::cout << rec.area();
...

 (c) 2011 Haim Michael. All Rights Reserved.

Objects on The Heap
● Declaring a class type pointer variable willl allow us to assign it

with an address for objecet we instantiate from that class.

● We will use the -> (arrow) operator for accessing the object

members and for calling methods on it.
...
Rectangle* rec;
rec = new Rectangle();
rec->setWidth(4);
rec->setHeight(3);
std::cout << rec->area();
...

 (c) 2011 Haim Michael. All Rights Reserved.

The Object Life Cycle
● The object life cycle includes three activities: creation,

assignment and destruction.

● While the first activity (creation) applies in all cases, the other

two don't. Objects are not necessary assigned nor destructed.

 (c) 2011 Haim Michael. All Rights Reserved.

Define Constructors
● The constructor responsibles for initializing the object. This

initialization ensures that its members don't include any none

valid values.

● The name of the constructor is the same as the name of the

class.

● The constructor doesn't have a return type.

● Similarly to methods, we can declare more than one constructor

as long as each and every one of them has a unique signature.

 (c) 2011 Haim Michael. All Rights Reserved.

Define Constructors
● Calling a constructor is feasible both for objects created on the

stack and for objects created on the heap.

● It is highly important to call delete on each and every object

created on the heap.

● We cannot explicitly call one constructor from another. The

result will be the creation of a new object.

 (c) 2011 Haim Michael. All Rights Reserved.

Define Constructors

class Rectangle
{
public:
 Rectangle();
 Rectangle(double w, double h);
 double area();
 void setWidth(double w);
 void setHeight(double h);
 double getWidth();
 double getHeight();
private:
 double width;
 double height;
};

 (c) 2011 Haim Michael. All Rights Reserved.

Define Constructors
#include "rectangle.h"

Rectangle::Rectangle()
{
 this->setWidth(0);
 this->setHeight(0);
}

Rectangle::Rectangle(double w, double h)
{
 this->setHeight(h);
 this->setWidth(w);
}

void Rectangle::setHeight(double h)
{
 if(h>0)
 {
 this->height = h;
 }
}

 (c) 2011 Haim Michael. All Rights Reserved.

Define Constructors
void Rectangle::setWidth(double w)
{
 if(w>0)
 {
 this->width = w;
 }
}

double Rectangle::getWidth()
{
 return this->width;
}

double Rectangle::getHeight()
{
 return this->height;
}

double Rectangle::area()
{
 return this->getWidth()*this->getHeight();
}

 (c) 2011 Haim Michael. All Rights Reserved.

Define Constructors

#include <iostream>
#include "stdio.h"
#include "rectangle.h"

int main(int argc, char *argv[])
{
 Rectangle rec(3,4);
 std::cout << "area of rec is " << rec.area() << std::endl;
 Rectangle* ob;
 ob = new Rectangle(3,4);
 std::cout << "area of ob is " << ob->area() << std::endl;
 getchar();
 return 0;
}

http://www.youtube.com/watch?v=LsD7Brm4llE

 (c) 2011 Haim Michael. All Rights Reserved.

Default Constructors
● The default constructor is the one that automatically exists in

each and every class as long as we don't define constructors of

our own.

● The default constructor takes no arguments and is also known

as the zero arguments constructor.

● It is common to define a zero arguments constructor in order to

take the place of the default constructor. This way we can

properly initialize the object.

 (c) 2011 Haim Michael. All Rights Reserved.

Initializer Lists
● C++ allows us to initialize the members of a new instantiated

object through the initializer list.

● It is an alternative way for initializing using code written within

the constructor.
...
Rectangle::Rectangle() :: width(0), height(0)
{
}
...

 (c) 2011 Haim Michael. All Rights Reserved.

Initializer Lists

#include <iostream>
#include "stdio.h"
#include "rectangle.h"

int main(int argc, char *argv[])
{
 Rectangle rec;
 std::cout << "area of rec is " << rec.area()

<< std::endl;
 getchar();
 return 0;
}

 (c) 2011 Haim Michael. All Rights Reserved.

Initializer Lists

class Rectangle
{
public:
 Rectangle();
 Rectangle(double w, double h);
 double area();
 void setWidth(double w);
 void setHeight(double h);
 double getWidth();
 double getHeight();
private:
 double width;
 double height;
};

 (c) 2011 Haim Michael. All Rights Reserved.

Initializer Lists

#include "rectangle.h"

Rectangle::Rectangle() : width(10), height(10)
{

}

double Rectangle::area()
{
 return this->width*this->height;
}

 (c) 2011 Haim Michael. All Rights Reserved.

Initializer Lists
● The initializer list gets into action when the object is created.

Initialization code within the constructor gets into action

afterwards. This difference sets the initialization through the

initializer list as the more efficient option.

 (c) 2011 Haim Michael. All Rights Reserved.

Const Data Members Initialization
● The const data members can be initialized through the initializer

list only. They cannot be initialized through code within the

constructor because that code is executed after the variable

was already created.

 (c) 2011 Haim Michael. All Rights Reserved.

Reference Data Members Initialization
● The reference data members cannot be initialized within the

constructor. They cannot exist without referring something.

● We can initialize reference data members using the initializer

list only.

 (c) 2011 Haim Michael. All Rights Reserved.

Object Data Members Initialization
● When having a member which is an object that should be

instantiated from a class that doesn't have a zero argument

constructor the only way to initialize it is using the initializer list.

 (c) 2011 Haim Michael. All Rights Reserved.

Initialize List Initialization Order
● The members are initialized according to their order in the class

definition. Their order in the list initializer has no effect.

 (c) 2011 Haim Michael. All Rights Reserved.

Copy Constructors
● The copy constructor allows us to create an object which is an

exact copy of another object.

● Unless we define our own copy constructor C++ will auto

generate one. The autogenerated one simply copies one value

into the other.

● When the original object holds addresses in its members the

autogenerated copy constructor won't be sufficient.

 (c) 2011 Haim Michael. All Rights Reserved.

Copy Constructors

class Point
{
public:
 Point();
 Point(const Point &src);
 Point(double x,double y);
 double x;
 double y;
};

geometry.h

 (c) 2011 Haim Michael. All Rights Reserved.

Copy Constructors

class Line
{
public:
 Line();
 Line(const Line &src);
 Line(Point* a,Point* b);
 void setPointA(Point* p);
 void setPointB(Point* p);
 Point* getPointA();
 Point* getPointB();
 void details();
 void triple();
private:
 Point* a;
 Point* b;
};

 (c) 2011 Haim Michael. All Rights Reserved.

Copy Constructors
#include <iostream>
#include "stdio.h"
#include "geometry.h"

Point::Point()
{
 x=0;
 y=0;
}

Point::Point(const Point &src)
{
 this->x = src.x;
 this->y = src.y;
}

Point::Point(double x, double y)
{
 this->x = x;
 this->y = y;
}

geometry.cpp

 (c) 2011 Haim Michael. All Rights Reserved.

Copy Constructors

Line::Line()
{
 a = new Point(10,10);
 b = new Point(10,10);
}

Line::Line(Point* a, Point* b)
{
 this->setPointA(a);
 this->setPointB(b);
}

Line::Line(const Line &src)
{
 a = new Point(src.a->x,src.b->y);
 b = new Point(src.a->x,src.b->y);
}

 (c) 2011 Haim Michael. All Rights Reserved.

Copy Constructors
void Line::setPointA(Point* p)
{
 a = p;
}

void Line::setPointB(Point* p)
{
 b = p;
}

Point* Line::getPointA()
{
 return a;
}

Point* Line::getPointB()
{
 return b;
}

 (c) 2011 Haim Michael. All Rights Reserved.

Copy Constructors
void Line::details()
{
 std::cout << "point a (" << a->x << "," << a->y << ")"

<< std::endl;
 std::cout << "point b (" << b->x << "," << b->y << ")"

<< std::endl;
}

void Line::triple()
{
 a->x*=3;
 a->y*=3;
 b->x*=3;
 b->y*=3;
}

 (c) 2011 Haim Michael. All Rights Reserved.

Copy Constructors
#include "stdio.h"
#include "geometry.h"

int main(int argc, char *argv[])
{
 Line one;
 Line two = one;
 one.triple();
 one.details();
 two.details();
 getchar();
 return 0;
}

main.cpp

http://www.youtube.com/watch?v=UzfXkyMDomA

 (c) 2011 Haim Michael. All Rights Reserved.

Copy Constructors

The Output

 (c) 2011 Haim Michael. All Rights Reserved.

Copy Constructors
● When passing an argument to a function it is passed by value.

This is the default behavior. The method receives a copy of the

variable. It doesn't receive the variable itself.

● Thus, whenever we pass an object as argument to a function

the compiler calls the copy constructor in order to initialize the

new created object.

● The copy constructor is also called whenever a function returns

an object.

 (c) 2011 Haim Michael. All Rights Reserved.

Copy Constructors
● We can explicitly call the copy constructor. We will do so when

there is a need to construct one object as an exact copy of

another one.

#include "stdio.h"
#include "geometry.h"
#include <iostream>

int main(int argc, char *argv[])
{
 Line one;
 Line two(one);
 one.triple();
 one.details();
 two.details();
 getchar();
 return 0;
}

http://www.youtube.com/watch?v=CwW6lyuihXc

 (c) 2011 Haim Michael. All Rights Reserved.

Passing Objects By Reference
● Passing objects by reference is usually more efficient

comparing with passing them by value. The copy constructor is

not invoked.

● Marking the parameter with const will ensure that the object is

not changed during the execution of the function. Other

developers won't need to worry about that possibility.
...
void Line::setPointA(const Point& p);
...

 (c) 2011 Haim Michael. All Rights Reserved.

Object Destruction
● When the object is destroyed the destructor method is called.

The purpose of the destructor is to cleanup the memory that

object was responsible for.

● Objects on the stack are automatically destroyed when the

execution goes beyond their scope. In other words, whenever

the code encounters an ending curly brace all objects that were

created on the stack within those curly braces are destroyed.

 (c) 2011 Haim Michael. All Rights Reserved.

Object Destruction
● Objects on the heap are not automatically destroyed. There is a

need to delete them.
...
Rectangle* rec;
rec = new Rectangle(4,3);
...
delete rec;
...

● We will usually define the destructors for taking care of deleting

objects on the heap.

 (c) 2011 Haim Michael. All Rights Reserved.

The Assignment Operator
● The assignment operator gets into action when assigning one

object into another. Unless we write one, C++ writes one for us.

● The default C++ assignment behavior is nearly identical to the

default copy constructor behavior. Unlike the copy constructor,

the assignment operator returns a reference to an object. That

allows us to chain assignments with each other.
...
Rectangle rec;
rec = otherRec = goodRec = anotherRec;
...

 (c) 2011 Haim Michael. All Rights Reserved.

The Assignment Operator

#include "stdio.h"
#include "geometry.h"
#include <iostream>

int main(int argc, char *argv[])
{
 Line one;
 Line two;
 two = one;
 one.triple();
 one.details();
 two.details();
 getchar();
 return 0;
}

http://www.youtube.com/watch?v=6ugU0sOCXcA

 (c) 2011 Haim Michael. All Rights Reserved.

The Assignment Operator

class Point
{
public:
 Point();
 Point(const Point &src);
 Point(double x,double y);
 double x;
 double y;
};

 (c) 2011 Haim Michael. All Rights Reserved.

The Assignment Operator

class Line
{
public:
 Line();
 Line(const Line &src);
 Line(Point* a,Point* b);
 Line& operator=(const Line& other);
 void setPointA(Point* p);
 void setPointB(Point* p);
 Point* getPointA();
 Point* getPointB();
 void details();
 void triple();
private:
 Point* a;
 Point* b;
};

 (c) 2011 Haim Michael. All Rights Reserved.

The Assignment Operator
#include <iostream>
#include "stdio.h"
#include "geometry.h"

Point::Point()
{
 x=0;
 y=0;
}

Point::Point(const Point &src)
{
 this->x = src.x;
 this->y = src.y;
}

Point::Point(double x, double y)
{
 this->x = x;
 this->y = y;
}

 (c) 2011 Haim Michael. All Rights Reserved.

The Assignment Operator
Line::Line()
{
 a = new Point(10,10);
 b = new Point(10,10);
}

Line::Line(Point* a, Point* b)
{
 this->setPointA(a);
 this->setPointB(b);
}

Line::Line(const Line &src)
{
 a = new Point(src.a->x,src.b->y);
 b = new Point(src.a->x,src.b->y);
}

void Line::setPointA(Point* p)
{
 a = p;
}

 (c) 2011 Haim Michael. All Rights Reserved.

The Assignment Operator
void Line::setPointB(Point* p)
{
 b = p;
}

Point* Line::getPointA()
{
 return a;
}

Point* Line::getPointB()
{
 return b;
}

void Line::details()
{
 std::cout << "point a (" << a->x << "," << a->y << ")"

<< std::endl;
 std::cout << "point b (" << b->x << "," << b->y << ")"

<< std::endl;
}

 (c) 2011 Haim Michael. All Rights Reserved.

The Assignment Operator
void Line::triple()
{
 a->x*=3;
 a->y*=3;
 b->x*=3;
 b->y*=3;
}

Line& Line::operator=(const Line& other)
{
 std::cout << "within operator=" << std::endl;
 if(this==&other)
 {
 return (*this);
 }
 a = new Point(other.a->x,other.a->y);
 b = new Point(other.b->x,other.b->y);
 return (*this);
}

 (c) 2011 Haim Michael. All Rights Reserved.

The Assignment Operator
● The = operator does not always mean assignment. When

placed on the same line where the variable is declared it

functions as a shorthand for the copy constructor.
...
Rec rec = otherRec;
...

 (c) 2011 Haim Michael. All Rights Reserved.

Dynamic Memory Allocation
● When we don't know how much memory will be needed before

the code actually runs we can dynamically allocate the require

memory during the execution itself.

● When our object dynamically allocates the required memory we

should pay attention to the copy constructor, assignment

operator and the destructor defined in its class.

 (c) 2011 Haim Michael. All Rights Reserved.

Freeing Memory with Destructors
● The destructor is executed when the object reaches the end of

its life.

● The destructor has the same name as the name of the class

preceeded by ~ (tilde).

● The destructor doesn't take any parameter and each class can

include the definition for one destructor only.

● In general, the destructor frees the memory that was allocated

in the constructor.

 (c) 2011 Haim Michael. All Rights Reserved.

Freeing Memory with Destructors

class Line
{
public:
 Line();
 Line(const Line &src);
 Line(Point* a,Point* b);
 ~Line();
 Line& operator=(const Line& other);
 static Line getLine();
 void setPointA(Point* p);
 void setPointB(Point* p);
 Point* getPointA();
 Point* getPointB();
 void details();
 void triple();
private:
 Point* a;
 Point* b;
};

 (c) 2011 Haim Michael. All Rights Reserved.

Freeing Memory with Destructors

...

Line::Line(const Line &src)
{
 std::cout << "within copy constructor" << std::endl;
 a = new Point(src.a->x,src.b->y);
 b = new Point(src.a->x,src.b->y);
}

Line::~Line()
{
 delete a;
 delete b;
}

...

 (c) 2011 Haim Michael. All Rights Reserved.

Disabling Pass By Value
● We can disable passing by value and disable assignment by

marking the copy constructor and the operator= definitions

with the private access specifier.

● Doing so, it won't be possible to compile code that that tries to

pass over the object by value, return it from a function or assign

to it.

 (c) 2011 Haim Michael. All Rights Reserved.

Static Data Members
● Static data member is a data member associated with a class

instead of object.
...
class Rectangle
{

public:
static int sCounter;

 double width;
double height;

}
...

 (c) 2011 Haim Michael. All Rights Reserved.

Static Data Members
● In order to access a static member we need to prefix it with the

name of the class togeher with the :: operator.
...
std::cout << Rectangle::sCounter;
...

 (c) 2011 Haim Michael. All Rights Reserved.

Const Data Members
● We can declare our members together with the const modifier.

That will turn them into constants.

● The const data members are usually also static ones. Usually,

it doesn't make sense to keep the same value in all objects.
...
class Car
{
 public:

...
 static const double maxSpeed = 180;
}
...

 (c) 2011 Haim Michael. All Rights Reserved.

Static Methods
● We can define static methods. Static methods don't apply

specifically to each object. Static methods apply to the class as

a whole.
...
class Rectangle
{

public:
 Rectangle static unite(Rectangle a, Rectangle b);

...
}
...

 (c) 2011 Haim Michael. All Rights Reserved.

Static Methods
● Calling a static method is done similarly to the way in which we

access static members.
...
Rectangle recA(4,3);
Rectangle recB(5,2);
Rectangle rec = Rectangle::unite(recA,recB);
...

● Static methods cannot access non static members.

 (c) 2011 Haim Michael. All Rights Reserved.

Const Methods
● We can mark a method with const in order to ensure that it

doesn't change any data member.
...
class Rectangle
{

public:
 double area() const;

...
}
...

 (c) 2011 Haim Michael. All Rights Reserved.

Const Methods
● Objects marked with const can call const methods only.

Others can call all sorts of methods. Both the ones marked with

const and the ones that arenot.

 (c) 2011 Haim Michael. All Rights Reserved.

Functions Overloading
● The C++ programming language supports overloading. We can

overload any function, method and constructor as many times

as we want as long as the number and/or the types of the

parameters differ.

 (c) 2011 Haim Michael. All Rights Reserved.

Functions Overloading

#include "stdio.h"
#include "geometry.h"
#include <iostream>

int main(int argc, char *argv[])
{
 Rectangle rec(8);
 std::cout << rec.area();
 getchar();
 return 0;
}

 (c) 2011 Haim Michael. All Rights Reserved.

Functions Overloading

class Rectangle
{
public:
 Rectangle();
 Rectangle(double size);
 Rectangle(double w,double h);
 double area();
private:
 double width;
 double height;
};

 (c) 2011 Haim Michael. All Rights Reserved.

Functions Overloading

#include <iostream>
#include "stdio.h"
#include "geometry.h"

Rectangle::Rectangle()
{
 width = 10;
 height = 10;
}

Rectangle::Rectangle(double size)
{
 if(size>0)
 {
 width = size;
 height = size;
 }
}

 (c) 2011 Haim Michael. All Rights Reserved.

Functions Overloading

Rectangle::Rectangle(double w, double h)
{
 if(w>0)
 {
 width = w;
 }
 if(h>0)
 {
 height = h;
 }
}

double Rectangle::area()
{
 return width*height;
}

 (c) 2011 Haim Michael. All Rights Reserved.

Default Parameters
● We can specify default values for function and method

parameters. If the user won't specify arguments for those

parameters the defaults will be used.

● Setting defaults we can do it for a continuous list of parameters

starting from the rightmost parameter only.

 (c) 2011 Haim Michael. All Rights Reserved.

Default Parameters

#include "stdio.h"
#include "geometry.h"
#include <iostream>

int main(int argc, char *argv[])
{
 Rectangle a(4);
 std::cout << a.area();
 getchar();
 return 0;
}

http://www.youtube.com/watch?v=UvfAenlyHNg

 (c) 2011 Haim Michael. All Rights Reserved.

Default Parameters

class Rectangle
{
public:
 Rectangle(double w=10,double h=10);
 double area() {return width*height;}
private:
 double width;
 double height;
};

 (c) 2011 Haim Michael. All Rights Reserved.

Default Parameters

#include <iostream>
#include "stdio.h"
#include "geometry.h"

Rectangle::Rectangle(double w, double h)
{
 if(w>0)
 {
 width = w;
 }
 if(h>0)
 {
 height = h;
 }
}

 (c) 2011 Haim Michael. All Rights Reserved.

Inline Methods
● The C++ programming language allows us to define inline

methods. Inline methods are methods the compiler insert their

body directly into the code instead of each and every call for

their execusion.

● The process involved with inline methods is just a simpler

version for using the #define macro.

● We can specify an inline method or a function by placing the

inline keyword infront of its name in the source code file

where we define it.

 (c) 2011 Haim Michael. All Rights Reserved.

Inline Methods
● We can alternatively include the implementation of the method

within the header file and taking it out from the source code file.

Doing so will have the same result.

 (c) 2011 Haim Michael. All Rights Reserved.

Inline Methods

#include "stdio.h"
#include "geometry.h"
#include <iostream>

int main(int argc, char *argv[])
{
 Rectangle* rec = new Rectangle(20,5);
 double total = rec->area();
 std::cout << "area is " << total << std::endl;
 getchar();
 return 0;
}

http://www.youtube.com/watch?v=h8B1GJcHonw

 (c) 2011 Haim Michael. All Rights Reserved.

Inline Methods

class Rectangle
{
public:
 Rectangle();
 Rectangle(double size);
 Rectangle(double w,double h);
 double area() {return width*height;}
private:
 double width;
 double height;
};

 (c) 2011 Haim Michael. All Rights Reserved.

Inline Methods
#include <iostream>
#include "stdio.h"
#include "geometry.h"

Rectangle::Rectangle()
{
 width = 10;
 height = 10;
}

Rectangle::Rectangle(double size)
{
 if(size>0)
 {
 width = size;
 height = size;
 }
}

 (c) 2011 Haim Michael. All Rights Reserved.

Inline Methods

Rectangle::Rectangle(double w, double h)
{
 if(w>0)
 {
 width = w;
 }
 if(h>0)
 {
 height = h;
 }
}

 (c) 2011 Haim Michael. All Rights Reserved.

Inline Methods
● When we define an inline method the compiler doesn't want to

inline it might silently ignore our directive.

● Inline methods can lead to code bloat. We should use inline

method and functions in a careful way.

 (c) 2011 Haim Michael. All Rights Reserved.

Nested Classes
● The class definition can include more than just methods and

members. The class definition can include inner classes, inner

structs and inner enums.

● Using the inner class (or the inner struct... or the inner enum)

outside the scope of the outer class depends on their access

specifiers.

● Referring an inner type should be done using its full qualified

name.

 (c) 2011 Haim Michael. All Rights Reserved.

Nested Classes

#include "stdio.h"
#include "geometry.h"
#include <iostream>

int main(int argc, char *argv[])
{
 Rectangle* rec = new Rectangle(20,5);
 rec->setLocation(Rectangle::Point(4,3));
 rec->getLocation().details();
 getchar();
 return 0;
}

http://www.youtube.com/watch?v=Nf_aLjB2kRs

 (c) 2011 Haim Michael. All Rights Reserved.

Nested Classes
class Rectangle
{
public:
 class Point
 {
 public:
 Point();
 Point(double x, double y);
 void details();
 double x;
 double y;
 };
 Rectangle();
 Rectangle(double size);
 Rectangle(double w,double h);
 double area() {return width*height;}
 void setLocation(Point point);
 Point getLocation();
private:
 double width;
 double height;
 Point location;
};

 (c) 2011 Haim Michael. All Rights Reserved.

Nested Classes

#include <iostream>
#include "stdio.h"
#include "geometry.h"

Rectangle::Rectangle()
{
 width = 10;
 height = 10;
}

Rectangle::Rectangle(double size)
{
 if(size>0)
 {
 width = size;
 height = size;
 }
}

 (c) 2011 Haim Michael. All Rights Reserved.

Nested Classes

Rectangle::Rectangle(double w, double h)
{
 if(w>0)
 {
 width = w;
 }
 if(h>0)
 {
 height = h;
 }
}

Rectangle::Point Rectangle::getLocation()
{
 return location;
}

void Rectangle::setLocation(Point point)
{
 location = point;
}

 (c) 2011 Haim Michael. All Rights Reserved.

Nested Classes

void Rectangle::Point::details()
{
 std::cout << "(" << x << "," << y << ")" <<
std::endl;
}

Rectangle::Point::Point(double x, double y)
{
 this->x = x;
 this->y = y;
}

Rectangle::Point::Point()
{
 this->x = 10;
 this->x = 10;
}

 (c) 2011 Haim Michael. All Rights Reserved.

The typedef Keyword
● We can use the typedef keyword to create an alias for a data

type.

typedef originalname newname;

 (c) 2011 Haim Michael. All Rights Reserved.

The typedef Keyword
class Rectangle
{
public:
 class Point
 {
 public:
 Point();
 Point(double x, double y);
 void details();
 double x;
 double y;
 };
 Rectangle();
 Rectangle(double size);
 Rectangle(double w,double h);
 double area() {return width*height;}
 void setLocation(Point point);
 Point getLocation();
private:
 double width;
 double height;
 Point location;
};

 (c) 2011 Haim Michael. All Rights Reserved.

The typedef Keyword
#include <iostream>
#include "stdio.h"
#include "geometry.h"

Rectangle::Rectangle()
{
 width = 10;
 height = 10;
}

Rectangle::Rectangle(double size)
{
 if(size>0)
 {
 width = size;
 height = size;
 }
}

 (c) 2011 Haim Michael. All Rights Reserved.

The typedef Keyword
Rectangle::Rectangle(double w, double h)
{
 if(w>0)
 {
 width = w;
 }
 if(h>0)
 {
 height = h;
 }
}

Rectangle::Point Rectangle::getLocation()
{
 return location;
}

void Rectangle::setLocation(Point point)
{
 location = point;
}

 (c) 2011 Haim Michael. All Rights Reserved.

The typedef Keyword
typedef Rectangle::Point RecPoint;
//void Rectangle::Point::details()
void RecPoint::details()
{
 std::cout << "(" << x << "," << y << ")" << std::endl;
}

//Rectangle::Point::Point(double x, double y)
RecPoint::Point(double x, double y)
{
 this->x = x;
 this->y = y;
}

//Rectangle::Point::Point()
RecPoint::Point()
{
 this->x = 10;
 this->x = 10;
}

 (c) 2011 Haim Michael. All Rights Reserved.

The typedef Keyword

#include "stdio.h"
#include "geometry.h"
#include <iostream>

int main(int argc, char *argv[])
{
 Rectangle* rec = new Rectangle(20,5);
 rec->setLocation(Rectangle::Point(4,3));
 rec->getLocation().details();
 getchar();
 return 0;
}

http://www.youtube.com/watch?v=0SXdIKEawdg

 (c) 2011 Haim Michael. All Rights Reserved.

Friends
● The C++ programming language allows us to declare that other

classeses or nonmember functions are friends. Becoming

friends they can access private and protected members and

methods.
...
Class Car
{

public:
friend class Person;
friend bool checkEngine(const Car& car);

}
...

The Person class is a friend of Car

We can declare a global function within our class together with the word friend.
That will be sufficient both for declaring about the function and for making it a
friend that can access Private and protected members of the class Car.

 (c) 2011 Haim Michael. All Rights Reserved.

Operators Overloading
● The C++ programming language allows us to overload the

operators we know with a specific definition for our class type.
...
Class Rectangle
{

public:
Rectangle();
Rectangle operator+(Rectangle& other);
double area();

private:
double width;
double height;

}
...

 (c) 2011 Haim Michael. All Rights Reserved.

Operators Overloading

#include "stdio.h"
#include "geometry.h"
#include <iostream>

int main(int argc, char *argv[])
{
 Rectangle a(2,3);
 Rectangle b(3,4);
 Rectangle c;
 c = a + b;
 std::cout << c.area();
 getchar();
 return 0;
}

http://www.youtube.com/watch?v=LR7ztpy94mI

 (c) 2011 Haim Michael. All Rights Reserved.

Operators Overloading

class Rectangle
{
public:
 Rectangle();
 Rectangle(double size);
 Rectangle(double w,double h);
 Rectangle operator+(Rectangle& other);
 double area() {return width*height;}
private:
 double width;
 double height;
};

 (c) 2011 Haim Michael. All Rights Reserved.

Operators Overloading

#include <iostream>
#include "stdio.h"
#include "geometry.h"

Rectangle::Rectangle()
{
 width = 10;
 height = 10;
}

Rectangle::Rectangle(double size)
{
 if(size>0)
 {
 width = size;
 height = size;
 }
}

 (c) 2011 Haim Michael. All Rights Reserved.

Operators Overloading

Rectangle::Rectangle(double w, double h)
{
 if(w>0)
 {
 width = w;
 }
 if(h>0)
 {
 height = h;
 }
}

Rectangle Rectangle::operator+(Rectangle& other)
{
 return Rectangle(

this->width+other.width,
this->height+other.height);

}

 (c) 2011 Haim Michael. All Rights Reserved.

Operators Overloading
● We can alternatively overload the operator by declaring a global

function.

#include "stdio.h"
#include "geometry.h"
#include <iostream>

int main(int argc, char *argv[])
{
 Rectangle a(2,3);
 Rectangle b(3,4);
 Rectangle c;
 c = a + b;
 std::cout << c.area();
 getchar();
 return 0;
}

 (c) 2011 Haim Michael. All Rights Reserved.

Operators Overloading

class Rectangle
{
public:
 Rectangle();
 Rectangle(double size);
 Rectangle(double w,double h);
 //Rectangle operator+(Rectangle& other);
 double area() {return width*height;}
 friend Rectangle operator+(Rectangle& a,Rectangle& b);
private:
 double width;
 double height;
};

 (c) 2011 Haim Michael. All Rights Reserved.

Operators Overloading
#include <iostream>
#include "stdio.h"
#include "geometry.h"

Rectangle::Rectangle()
{
 width = 10;
 height = 10;
}

Rectangle::Rectangle(double size)
{
 if(size>0)
 {
 width = size;
 height = size;
 }
}

 (c) 2011 Haim Michael. All Rights Reserved.

Operators Overloading
Rectangle::Rectangle(double w, double h)
{
 if(w>0)
 {
 width = w;
 }
 if(h>0)
 {
 height = h;
 }
}

Rectangle operator+(Rectangle& a, Rectangle& b)
{
 return Rectangle(a.width+b.width,a.height+b.height);
}

 (c) 2011 Haim Michael. All Rights Reserved.

Operators Overloading

class Rectangle
{
public:
 Rectangle();
 Rectangle(double size);
 Rectangle(double w,double h);
 //Rectangle operator+(Rectangle& other);
 double area() {return width*height;}
 friend Rectangle operator+(Rectangle& a,Rectangle& b);
private:
 double width;
 double height;
};

 (c) 2011 Haim Michael. All Rights Reserved.

Operators Overloading
● We can overload all other operators by defining similar

functions.

Rectangle operator+(Rectangle& a, Rectangle& b)
Rectangle operator-(Rectangle& a, Rectangle& b)
Rectangle operator*(Rectangle& a, Rectangle& b)
Rectangle operator\(Rectangle& a, Rectangle& b)
Rectangle operator+=(Rectangle& a, Rectangle& b)
Rectangle operator-=(Rectangle& a, Rectangle& b)
Rectangle operator*=(Rectangle& a, Rectangle& b)
Rectangle operator\=(Rectangle& a, Rectangle& b)
bool operator==(Rectangle& a, Rectangle& b)
bool operator<(Rectangle& a, Rectangle& b)
bool operator>(Rectangle& a, Rectangle& b)
bool operator!=(Rectangle& a, Rectangle& b)
...

(c) 2011 Haim Michael. All Rights Reserved. 02/07/11

(c) 2011 Haim Michael. All Rights Reserved. 1

 (c) 2011 Haim Michael. All Rights Reserved. 1

Classes

(c) 2011 Haim Michael. All Rights Reserved. 02/07/11

(c) 2011 Haim Michael. All Rights Reserved. 2

 (c) 2011 Haim Michael. All Rights Reserved. 2

Introduction
● The definition of a new class in C++ includes two steps. We first

need to declare about the it and then we need to define it.

● The declaration about the class methods and members is done

in a separated file, also known as the hearder file. Its extension

is h.

● The definition is done in a source code file. Its extension is cpp.

(c) 2011 Haim Michael. All Rights Reserved. 02/07/11

(c) 2011 Haim Michael. All Rights Reserved. 3

 (c) 2011 Haim Michael. All Rights Reserved. 3

Class Declaration
● The class declaration is placed within a header file. The

extension should be h. We should terminate the declaration

with a semicolon.

(c) 2011 Haim Michael. All Rights Reserved. 02/07/11

(c) 2011 Haim Michael. All Rights Reserved. 4

 (c) 2011 Haim Michael. All Rights Reserved. 4

Class Declaration

class Rectangle
{
public:
 Rectangle();
 Rectangle(double w, double h);
 double area();
 void setWidth(double w);
 void setHeight(double h);
 double getWidth();
 double getHeight();
private:
 double width;
 double height;
};

(c) 2011 Haim Michael. All Rights Reserved. 02/07/11

(c) 2011 Haim Michael. All Rights Reserved. 5

 (c) 2011 Haim Michael. All Rights Reserved. 5

Class Definition
● The class definition is placed within a source code file. The

extension should be cpp.

(c) 2011 Haim Michael. All Rights Reserved. 02/07/11

(c) 2011 Haim Michael. All Rights Reserved. 6

 (c) 2011 Haim Michael. All Rights Reserved. 6

Class Definition

#include "rectangle.h"

Rectangle::Rectangle()
{
 setWidth(0);
 setHeight(0);
}

void Rectangle::setHeight(double h)
{
 if(h>0)
 {
 height = h;
 }
}

(c) 2011 Haim Michael. All Rights Reserved. 02/07/11

(c) 2011 Haim Michael. All Rights Reserved. 7

 (c) 2011 Haim Michael. All Rights Reserved. 7

Class Definition
void Rectangle::setWidth(double w)
{
 if(w>0)
 {
 width = w;
 }
}

double Rectangle::getWidth()
{
 return width;
}

double Rectangle::getHeight()
{
 return height;
}

double Rectangle::area()
{
 return getWidth()*getHeight();
}

(c) 2011 Haim Michael. All Rights Reserved. 02/07/11

(c) 2011 Haim Michael. All Rights Reserved. 8

 (c) 2011 Haim Michael. All Rights Reserved. 8

Class Instantiating
● Unlike Java and C#, when declaring a class type variable the

variable itself is already an object.
...
Rectangle rec;
rec.setWidth(4);
rec.setHeight(3);
std::cout << rec.area();
...

(c) 2011 Haim Michael. All Rights Reserved. 02/07/11

(c) 2011 Haim Michael. All Rights Reserved. 9

 (c) 2011 Haim Michael. All Rights Reserved. 9

Class Instantiating
● We can use the new operator for creating a new object of our

class. Calling new returns the address of the new object. We

can assign the address to a pointer type variable.
...
Rectangle* rec;
rec = new Rectangle();
...

(c) 2011 Haim Michael. All Rights Reserved. 02/07/11

(c) 2011 Haim Michael. All Rights Reserved. 10

 (c) 2011 Haim Michael. All Rights Reserved. 10

Class Instantiating
● Working with an object that was instantiated using new we

should use the -> (arrow) operator.
...
Rectangle* rec;
rec = new Rectangle();
rec->setWidth(4);
rec->setHeight(3);
std::cout << rec->area();
...

(c) 2011 Haim Michael. All Rights Reserved. 02/07/11

(c) 2011 Haim Michael. All Rights Reserved. 11

 (c) 2011 Haim Michael. All Rights Reserved. 11

Class Instantiating

#include <iostream>
#include "stdio.h"
#include "rectangle.h"

int main(int argc, char *argv[])
{
 Rectangle obA;
 obA.setWidth(4);
 obA.setHeight(3);
 std::cout << obA.area() << std::endl;
 Rectangle* obB;
 obB = new Rectangle();
 obB->setWidth(4);
 obB->setHeight(3);
 std::cout << obB->area() << std::endl;
 getchar();
 return 0;
}

(c) 2011 Haim Michael. All Rights Reserved. 02/07/11

(c) 2011 Haim Michael. All Rights Reserved. 12

 (c) 2011 Haim Michael. All Rights Reserved. 12

Access Control
● Each and every method and each and every member in our

class is subject to one of the three possible access specifiers:

public, protected or private.

● Unlike Java and C#, when specifying an access specifier it

applies all methods and all members declaration that follows it.

Unlike Java and C# we don't need to place separated access

specifiers for each and every method or member.

(c) 2011 Haim Michael. All Rights Reserved. 02/07/11

(c) 2011 Haim Michael. All Rights Reserved. 13

 (c) 2011 Haim Michael. All Rights Reserved. 13

Access Control
● The default access specifier is private. Each and ever

method as well as each and every member their declaration is

before the first access specifier shall have the private access

specifier.

● C++ allows us to define methods both in classes and in structs.

Unlike a class, the default access specifier for a struct is

public.

(c) 2011 Haim Michael. All Rights Reserved. 02/07/11

(c) 2011 Haim Michael. All Rights Reserved. 14

 (c) 2011 Haim Michael. All Rights Reserved. 14

Access Control
● We place the access specifiers within the declaration in the

header file only. We don't need to repeat it within the source

code file, where the implementation resides.

(c) 2011 Haim Michael. All Rights Reserved. 02/07/11

(c) 2011 Haim Michael. All Rights Reserved. 15

 (c) 2011 Haim Michael. All Rights Reserved. 15

The public Access Specifier
● Any code can call a public method or access a public

member.

● We will define public methods when we want to allow any

code the possibility to call them.

● We will define public members when we want to allow any

code a direct access to them.

(c) 2011 Haim Michael. All Rights Reserved. 02/07/11

(c) 2011 Haim Michael. All Rights Reserved. 16

 (c) 2011 Haim Michael. All Rights Reserved. 16

The private Access Specifier
● Only methods that belong to the same class where the

private member was declared can access that member. Only

methods that belong to the same class where the private

method was declared can call it.

● We will define private methods and private members

when we want to restrict their accessibility.

(c) 2011 Haim Michael. All Rights Reserved. 02/07/11

(c) 2011 Haim Michael. All Rights Reserved. 17

 (c) 2011 Haim Michael. All Rights Reserved. 17

The protected Access Specifier
● Only methods that belong to the same class where the

protected member was declared or belong to a class that

inherit it can access that member. Only methods that belong to

the same class where the protected method was declared or

belong to a class that inherit it can call it.

● We will define protected methods and protected members

when we want to restrict their accessibility to the very same

class they belong to as well as to other classes that inherit it.

(c) 2011 Haim Michael. All Rights Reserved. 02/07/11

(c) 2011 Haim Michael. All Rights Reserved. 18

 (c) 2011 Haim Michael. All Rights Reserved. 18

Code Clarity
● It is a good practice to group the declaration into groups in the

following order: public, protected and private.

class NameOfOurClass
{

public:
//methods declaration
//members declaration

protected:
//methods declaration
//members declaration

private:
//methods declaration
//members declaration

}

(c) 2011 Haim Michael. All Rights Reserved. 02/07/11

(c) 2011 Haim Michael. All Rights Reserved. 19

 (c) 2011 Haim Michael. All Rights Reserved. 19

Calling Other Methods
● We can call methods from within the code of other methods in

the same class.
...
double Rectangle::area()
{
 return getWidth()*getHeight();
}
...

(c) 2011 Haim Michael. All Rights Reserved. 02/07/11

(c) 2011 Haim Michael. All Rights Reserved. 20

 (c) 2011 Haim Michael. All Rights Reserved. 20

The this Pointer
● Each method call passes a pointer to the object on which it was

called. This pointer is passed as a hidden parameter. The name

of this hidden parameter is this.
...
void Rectangle::setWidth(double wVal)
{
 if(wVal>0)

{
this->width = wVal;

}
}
...

(c) 2011 Haim Michael. All Rights Reserved. 02/07/11

(c) 2011 Haim Michael. All Rights Reserved. 21

 (c) 2011 Haim Michael. All Rights Reserved. 21

The this Pointer

class Rectangle
{
public:
 Rectangle();
 Rectangle(double w, double h);
 double area();
 void setWidth(double w);
 void setHeight(double h);
 double getWidth();
 double getHeight();
private:
 double width;
 double height;
};

(c) 2011 Haim Michael. All Rights Reserved. 02/07/11

(c) 2011 Haim Michael. All Rights Reserved. 22

 (c) 2011 Haim Michael. All Rights Reserved. 22

The this Pointer

#include "rectangle.h"

Rectangle::Rectangle()
{
 this->setWidth(0);
 this->setHeight(0);
}

void Rectangle::setHeight(double h)
{
 if(h>0)
 {
 this->height = h;
 }
}

(c) 2011 Haim Michael. All Rights Reserved. 02/07/11

(c) 2011 Haim Michael. All Rights Reserved. 23

 (c) 2011 Haim Michael. All Rights Reserved. 23

The this Pointer
void Rectangle::setWidth(double w)
{
 if(w>0)
 {
 this->width = w;
 }
}

double Rectangle::getWidth()
{
 return this->width;
}

double Rectangle::getHeight()
{
 return this->height;
}

double Rectangle::area()
{
 return this->getWidth()*this->getHeight();
}

(c) 2011 Haim Michael. All Rights Reserved. 02/07/11

(c) 2011 Haim Michael. All Rights Reserved. 24

 (c) 2011 Haim Michael. All Rights Reserved. 24

The this Pointer

#include <iostream>
#include "stdio.h"
#include "rectangle.h"

int main(int argc, char *argv[])
{
 Rectangle* ob;
 ob = new Rectangle();
 ob->setWidth(4);
 ob->setHeight(3);
 std::cout << ob->area() << std::endl;
 getchar();
 return 0;
}

(c) 2011 Haim Michael. All Rights Reserved. 02/07/11

(c) 2011 Haim Michael. All Rights Reserved. 25

 (c) 2011 Haim Michael. All Rights Reserved. 25

Objects on The Stack
● Declaring a simple class type variable will indirectly instantiate

that class. The variable will actually be an object of that class.

● We will use the . (dot) operator for accessing the object

members and for calling methods on it.
...
Rectangle rec;
rec.setWidth(4);
rec.setHeight(3);
std::cout << rec.area();
...

(c) 2011 Haim Michael. All Rights Reserved. 02/07/11

(c) 2011 Haim Michael. All Rights Reserved. 26

 (c) 2011 Haim Michael. All Rights Reserved. 26

Objects on The Heap
● Declaring a class type pointer variable willl allow us to assign it

with an address for objecet we instantiate from that class.

● We will use the -> (arrow) operator for accessing the object

members and for calling methods on it.
...
Rectangle* rec;
rec = new Rectangle();
rec->setWidth(4);
rec->setHeight(3);
std::cout << rec->area();
...

(c) 2011 Haim Michael. All Rights Reserved. 02/07/11

(c) 2011 Haim Michael. All Rights Reserved. 27

 (c) 2011 Haim Michael. All Rights Reserved. 27

The Object Life Cycle
● The object life cycle includes three activities: creation,

assignment and destruction.

● While the first activity (creation) applies in all cases, the other

two don't. Objects are not necessary assigned nor destructed.

(c) 2011 Haim Michael. All Rights Reserved. 02/07/11

(c) 2011 Haim Michael. All Rights Reserved. 28

 (c) 2011 Haim Michael. All Rights Reserved. 28

Define Constructors
● The constructor responsibles for initializing the object. This

initialization ensures that its members don't include any none

valid values.

● The name of the constructor is the same as the name of the

class.

● The constructor doesn't have a return type.

● Similarly to methods, we can declare more than one constructor

as long as each and every one of them has a unique signature.

(c) 2011 Haim Michael. All Rights Reserved. 02/07/11

(c) 2011 Haim Michael. All Rights Reserved. 29

 (c) 2011 Haim Michael. All Rights Reserved. 29

Define Constructors
● Calling a constructor is feasible both for objects created on the

stack and for objects created on the heap.

● It is highly important to call delete on each and every object

created on the heap.

● We cannot explicitly call one constructor from another. The

result will be the creation of a new object.

(c) 2011 Haim Michael. All Rights Reserved. 02/07/11

(c) 2011 Haim Michael. All Rights Reserved. 30

 (c) 2011 Haim Michael. All Rights Reserved. 30

Define Constructors

class Rectangle
{
public:
 Rectangle();
 Rectangle(double w, double h);
 double area();
 void setWidth(double w);
 void setHeight(double h);
 double getWidth();
 double getHeight();
private:
 double width;
 double height;
};

(c) 2011 Haim Michael. All Rights Reserved. 02/07/11

(c) 2011 Haim Michael. All Rights Reserved. 31

 (c) 2011 Haim Michael. All Rights Reserved. 31

Define Constructors
#include "rectangle.h"

Rectangle::Rectangle()
{
 this->setWidth(0);
 this->setHeight(0);
}

Rectangle::Rectangle(double w, double h)
{
 this->setHeight(h);
 this->setWidth(w);
}

void Rectangle::setHeight(double h)
{
 if(h>0)
 {
 this->height = h;
 }
}

(c) 2011 Haim Michael. All Rights Reserved. 02/07/11

(c) 2011 Haim Michael. All Rights Reserved. 32

 (c) 2011 Haim Michael. All Rights Reserved. 32

Define Constructors
void Rectangle::setWidth(double w)
{
 if(w>0)
 {
 this->width = w;
 }
}

double Rectangle::getWidth()
{
 return this->width;
}

double Rectangle::getHeight()
{
 return this->height;
}

double Rectangle::area()
{
 return this->getWidth()*this->getHeight();
}

(c) 2011 Haim Michael. All Rights Reserved. 02/07/11

(c) 2011 Haim Michael. All Rights Reserved. 33

 (c) 2011 Haim Michael. All Rights Reserved. 33

Define Constructors

#include <iostream>
#include "stdio.h"
#include "rectangle.h"

int main(int argc, char *argv[])
{
 Rectangle rec(3,4);
 std::cout << "area of rec is " << rec.area() << std::endl;
 Rectangle* ob;
 ob = new Rectangle(3,4);
 std::cout << "area of ob is " << ob->area() << std::endl;
 getchar();
 return 0;
}

(c) 2011 Haim Michael. All Rights Reserved. 02/07/11

(c) 2011 Haim Michael. All Rights Reserved. 34

 (c) 2011 Haim Michael. All Rights Reserved. 34

Default Constructors
● The default constructor is the one that automatically exists in

each and every class as long as we don't define constructors of

our own.

● The default constructor takes no arguments and is also known

as the zero arguments constructor.

● It is common to define a zero arguments constructor in order to

take the place of the default constructor. This way we can

properly initialize the object.

(c) 2011 Haim Michael. All Rights Reserved. 02/07/11

(c) 2011 Haim Michael. All Rights Reserved. 35

 (c) 2011 Haim Michael. All Rights Reserved. 35

Initializer Lists
● C++ allows us to initialize the members of a new instantiated

object through the initializer list.

● It is an alternative way for initializing using code written within

the constructor.
...
Rectangle::Rectangle() :: width(0), height(0)
{
}
...

(c) 2011 Haim Michael. All Rights Reserved. 02/07/11

(c) 2011 Haim Michael. All Rights Reserved. 36

 (c) 2011 Haim Michael. All Rights Reserved. 36

Initializer Lists

#include <iostream>
#include "stdio.h"
#include "rectangle.h"

int main(int argc, char *argv[])
{
 Rectangle rec;
 std::cout << "area of rec is " << rec.area()

<< std::endl;
 getchar();
 return 0;
}

(c) 2011 Haim Michael. All Rights Reserved. 02/07/11

(c) 2011 Haim Michael. All Rights Reserved. 37

 (c) 2011 Haim Michael. All Rights Reserved. 37

Initializer Lists

class Rectangle
{
public:
 Rectangle();
 Rectangle(double w, double h);
 double area();
 void setWidth(double w);
 void setHeight(double h);
 double getWidth();
 double getHeight();
private:
 double width;
 double height;
};

(c) 2011 Haim Michael. All Rights Reserved. 02/07/11

(c) 2011 Haim Michael. All Rights Reserved. 38

 (c) 2011 Haim Michael. All Rights Reserved. 38

Initializer Lists

#include "rectangle.h"

Rectangle::Rectangle() : width(10), height(10)
{

}

double Rectangle::area()
{
 return this->width*this->height;
}

(c) 2011 Haim Michael. All Rights Reserved. 02/07/11

(c) 2011 Haim Michael. All Rights Reserved. 39

 (c) 2011 Haim Michael. All Rights Reserved. 39

Initializer Lists
● The initializer list gets into action when the object is created.

Initialization code within the constructor gets into action

afterwards. This difference sets the initialization through the

initializer list as the more efficient option.

(c) 2011 Haim Michael. All Rights Reserved. 02/07/11

(c) 2011 Haim Michael. All Rights Reserved. 40

 (c) 2011 Haim Michael. All Rights Reserved. 40

Const Data Members Initialization
● The const data members can be initialized through the initializer

list only. They cannot be initialized through code within the

constructor because that code is executed after the variable

was already created.

(c) 2011 Haim Michael. All Rights Reserved. 02/07/11

(c) 2011 Haim Michael. All Rights Reserved. 41

 (c) 2011 Haim Michael. All Rights Reserved. 41

Reference Data Members Initialization
● The reference data members cannot be initialized within the

constructor. They cannot exist without referring something.

● We can initialize reference data members using the initializer

list only.

(c) 2011 Haim Michael. All Rights Reserved. 02/07/11

(c) 2011 Haim Michael. All Rights Reserved. 42

 (c) 2011 Haim Michael. All Rights Reserved. 42

Object Data Members Initialization
● When having a member which is an object that should be

instantiated from a class that doesn't have a zero argument

constructor the only way to initialize it is using the initializer list.

(c) 2011 Haim Michael. All Rights Reserved. 02/07/11

(c) 2011 Haim Michael. All Rights Reserved. 43

 (c) 2011 Haim Michael. All Rights Reserved. 43

Initialize List Initialization Order
● The members are initialized according to their order in the class

definition. Their order in the list initializer has no effect.

(c) 2011 Haim Michael. All Rights Reserved. 02/07/11

(c) 2011 Haim Michael. All Rights Reserved. 44

 (c) 2011 Haim Michael. All Rights Reserved. 44

Copy Constructors
● The copy constructor allows us to create an object which is an

exact copy of another object.

● Unless we define our own copy constructor C++ will auto

generate one. The autogenerated one simply copies one value

into the other.

● When the original object holds addresses in its members the

autogenerated copy constructor won't be sufficient.

(c) 2011 Haim Michael. All Rights Reserved. 02/07/11

(c) 2011 Haim Michael. All Rights Reserved. 45

 (c) 2011 Haim Michael. All Rights Reserved. 45

Copy Constructors

class Point
{
public:
 Point();
 Point(const Point &src);
 Point(double x,double y);
 double x;
 double y;
};

geometry.h

(c) 2011 Haim Michael. All Rights Reserved. 02/07/11

(c) 2011 Haim Michael. All Rights Reserved. 46

 (c) 2011 Haim Michael. All Rights Reserved. 46

Copy Constructors

class Line
{
public:
 Line();
 Line(const Line &src);
 Line(Point* a,Point* b);
 void setPointA(Point* p);
 void setPointB(Point* p);
 Point* getPointA();
 Point* getPointB();
 void details();
 void triple();
private:
 Point* a;
 Point* b;
};

(c) 2011 Haim Michael. All Rights Reserved. 02/07/11

(c) 2011 Haim Michael. All Rights Reserved. 47

 (c) 2011 Haim Michael. All Rights Reserved. 47

Copy Constructors
#include <iostream>
#include "stdio.h"
#include "geometry.h"

Point::Point()
{
 x=0;
 y=0;
}

Point::Point(const Point &src)
{
 this->x = src.x;
 this->y = src.y;
}

Point::Point(double x, double y)
{
 this->x = x;
 this->y = y;
}

geometry.cpp

(c) 2011 Haim Michael. All Rights Reserved. 02/07/11

(c) 2011 Haim Michael. All Rights Reserved. 48

 (c) 2011 Haim Michael. All Rights Reserved. 48

Copy Constructors

Line::Line()
{
 a = new Point(10,10);
 b = new Point(10,10);
}

Line::Line(Point* a, Point* b)
{
 this->setPointA(a);
 this->setPointB(b);
}

Line::Line(const Line &src)
{
 a = new Point(src.a->x,src.b->y);
 b = new Point(src.a->x,src.b->y);
}

(c) 2011 Haim Michael. All Rights Reserved. 02/07/11

(c) 2011 Haim Michael. All Rights Reserved. 49

 (c) 2011 Haim Michael. All Rights Reserved. 49

Copy Constructors
void Line::setPointA(Point* p)
{
 a = p;
}

void Line::setPointB(Point* p)
{
 b = p;
}

Point* Line::getPointA()
{
 return a;
}

Point* Line::getPointB()
{
 return b;
}

(c) 2011 Haim Michael. All Rights Reserved. 02/07/11

(c) 2011 Haim Michael. All Rights Reserved. 50

 (c) 2011 Haim Michael. All Rights Reserved. 50

Copy Constructors
void Line::details()
{
 std::cout << "point a (" << a->x << "," << a->y << ")"

<< std::endl;
 std::cout << "point b (" << b->x << "," << b->y << ")"

<< std::endl;
}

void Line::triple()
{
 a->x*=3;
 a->y*=3;
 b->x*=3;
 b->y*=3;
}

(c) 2011 Haim Michael. All Rights Reserved. 02/07/11

(c) 2011 Haim Michael. All Rights Reserved. 51

 (c) 2011 Haim Michael. All Rights Reserved. 51

Copy Constructors
#include "stdio.h"
#include "geometry.h"

int main(int argc, char *argv[])
{
 Line one;
 Line two = one;
 one.triple();
 one.details();
 two.details();
 getchar();
 return 0;
}

main.cpp

(c) 2011 Haim Michael. All Rights Reserved. 02/07/11

(c) 2011 Haim Michael. All Rights Reserved. 52

 (c) 2011 Haim Michael. All Rights Reserved. 52

Copy Constructors

The Output

(c) 2011 Haim Michael. All Rights Reserved. 02/07/11

(c) 2011 Haim Michael. All Rights Reserved. 53

 (c) 2011 Haim Michael. All Rights Reserved. 53

Copy Constructors
● When passing an argument to a function it is passed by value.

This is the default behavior. The method receives a copy of the

variable. It doesn't receive the variable itself.

● Thus, whenever we pass an object as argument to a function

the compiler calls the copy constructor in order to initialize the

new created object.

● The copy constructor is also called whenever a function returns

an object.

(c) 2011 Haim Michael. All Rights Reserved. 02/07/11

(c) 2011 Haim Michael. All Rights Reserved. 54

 (c) 2011 Haim Michael. All Rights Reserved. 54

Copy Constructors
● We can explicitly call the copy constructor. We will do so when

there is a need to construct one object as an exact copy of

another one.

#include "stdio.h"
#include "geometry.h"
#include <iostream>

int main(int argc, char *argv[])
{
 Line one;
 Line two(one);
 one.triple();
 one.details();
 two.details();
 getchar();
 return 0;
}

(c) 2011 Haim Michael. All Rights Reserved. 02/07/11

(c) 2011 Haim Michael. All Rights Reserved. 55

 (c) 2011 Haim Michael. All Rights Reserved. 55

Passing Objects By Reference
● Passing objects by reference is usually more efficient

comparing with passing them by value. The copy constructor is

not invoked.

● Marking the parameter with const will ensure that the object is

not changed during the execution of the function. Other

developers won't need to worry about that possibility.
...
void Line::setPointA(const Point& p);
...

(c) 2011 Haim Michael. All Rights Reserved. 02/07/11

(c) 2011 Haim Michael. All Rights Reserved. 56

 (c) 2011 Haim Michael. All Rights Reserved. 56

Object Destruction
● When the object is destroyed the destructor method is called.

The purpose of the destructor is to cleanup the memory that

object was responsible for.

● Objects on the stack are automatically destroyed when the

execution goes beyond their scope. In other words, whenever

the code encounters an ending curly brace all objects that were

created on the stack within those curly braces are destroyed.

(c) 2011 Haim Michael. All Rights Reserved. 02/07/11

(c) 2011 Haim Michael. All Rights Reserved. 57

 (c) 2011 Haim Michael. All Rights Reserved. 57

Object Destruction
● Objects on the heap are not automatically destroyed. There is a

need to delete them.
...
Rectangle* rec;
rec = new Rectangle(4,3);
...
delete rec;
...

● We will usually define the destructors for taking care of deleting

objects on the heap.

(c) 2011 Haim Michael. All Rights Reserved. 02/07/11

(c) 2011 Haim Michael. All Rights Reserved. 58

 (c) 2011 Haim Michael. All Rights Reserved. 58

The Assignment Operator
● The assignment operator gets into action when assigning one

object into another. Unless we write one, C++ writes one for us.

● The default C++ assignment behavior is nearly identical to the

default copy constructor behavior. Unlike the copy constructor,

the assignment operator returns a reference to an object. That

allows us to chain assignments with each other.
...
Rectangle rec;
rec = otherRec = goodRec = anotherRec;
...

(c) 2011 Haim Michael. All Rights Reserved. 02/07/11

(c) 2011 Haim Michael. All Rights Reserved. 59

 (c) 2011 Haim Michael. All Rights Reserved. 59

The Assignment Operator

#include "stdio.h"
#include "geometry.h"
#include <iostream>

int main(int argc, char *argv[])
{
 Line one;
 Line two;
 two = one;
 one.triple();
 one.details();
 two.details();
 getchar();
 return 0;
}

(c) 2011 Haim Michael. All Rights Reserved. 02/07/11

(c) 2011 Haim Michael. All Rights Reserved. 60

 (c) 2011 Haim Michael. All Rights Reserved. 60

The Assignment Operator

class Point
{
public:
 Point();
 Point(const Point &src);
 Point(double x,double y);
 double x;
 double y;
};

(c) 2011 Haim Michael. All Rights Reserved. 02/07/11

(c) 2011 Haim Michael. All Rights Reserved. 61

 (c) 2011 Haim Michael. All Rights Reserved. 61

The Assignment Operator

class Line
{
public:
 Line();
 Line(const Line &src);
 Line(Point* a,Point* b);
 Line& operator=(const Line& other);
 void setPointA(Point* p);
 void setPointB(Point* p);
 Point* getPointA();
 Point* getPointB();
 void details();
 void triple();
private:
 Point* a;
 Point* b;
};

(c) 2011 Haim Michael. All Rights Reserved. 02/07/11

(c) 2011 Haim Michael. All Rights Reserved. 62

 (c) 2011 Haim Michael. All Rights Reserved. 62

The Assignment Operator
#include <iostream>
#include "stdio.h"
#include "geometry.h"

Point::Point()
{
 x=0;
 y=0;
}

Point::Point(const Point &src)
{
 this->x = src.x;
 this->y = src.y;
}

Point::Point(double x, double y)
{
 this->x = x;
 this->y = y;
}

(c) 2011 Haim Michael. All Rights Reserved. 02/07/11

(c) 2011 Haim Michael. All Rights Reserved. 63

 (c) 2011 Haim Michael. All Rights Reserved. 63

The Assignment Operator
Line::Line()
{
 a = new Point(10,10);
 b = new Point(10,10);
}

Line::Line(Point* a, Point* b)
{
 this->setPointA(a);
 this->setPointB(b);
}

Line::Line(const Line &src)
{
 a = new Point(src.a->x,src.b->y);
 b = new Point(src.a->x,src.b->y);
}

void Line::setPointA(Point* p)
{
 a = p;
}

(c) 2011 Haim Michael. All Rights Reserved. 02/07/11

(c) 2011 Haim Michael. All Rights Reserved. 64

 (c) 2011 Haim Michael. All Rights Reserved. 64

The Assignment Operator
void Line::setPointB(Point* p)
{
 b = p;
}

Point* Line::getPointA()
{
 return a;
}

Point* Line::getPointB()
{
 return b;
}

void Line::details()
{
 std::cout << "point a (" << a->x << "," << a->y << ")"

<< std::endl;
 std::cout << "point b (" << b->x << "," << b->y << ")"

<< std::endl;
}

(c) 2011 Haim Michael. All Rights Reserved. 02/07/11

(c) 2011 Haim Michael. All Rights Reserved. 65

 (c) 2011 Haim Michael. All Rights Reserved. 65

The Assignment Operator
void Line::triple()
{
 a->x*=3;
 a->y*=3;
 b->x*=3;
 b->y*=3;
}

Line& Line::operator=(const Line& other)
{
 std::cout << "within operator=" << std::endl;
 if(this==&other)
 {
 return (*this);
 }
 a = new Point(other.a->x,other.a->y);
 b = new Point(other.b->x,other.b->y);
 return (*this);
}

(c) 2011 Haim Michael. All Rights Reserved. 02/07/11

(c) 2011 Haim Michael. All Rights Reserved. 66

 (c) 2011 Haim Michael. All Rights Reserved. 66

The Assignment Operator
● The = operator does not always mean assignment. When

placed on the same line where the variable is declared it

functions as a shorthand for the copy constructor.
...
Rec rec = otherRec;
...

(c) 2011 Haim Michael. All Rights Reserved. 02/07/11

(c) 2011 Haim Michael. All Rights Reserved. 67

 (c) 2011 Haim Michael. All Rights Reserved. 67

Dynamic Memory Allocation
● When we don't know how much memory will be needed before

the code actually runs we can dynamically allocate the require

memory during the execution itself.

● When our object dynamically allocates the required memory we

should pay attention to the copy constructor, assignment

operator and the destructor defined in its class.

(c) 2011 Haim Michael. All Rights Reserved. 02/07/11

(c) 2011 Haim Michael. All Rights Reserved. 68

 (c) 2011 Haim Michael. All Rights Reserved. 68

Freeing Memory with Destructors
● The destructor is executed when the object reaches the end of

its life.

● The destructor has the same name as the name of the class

preceeded by ~ (tilde).

● The destructor doesn't take any parameter and each class can

include the definition for one destructor only.

● In general, the destructor frees the memory that was allocated

in the constructor.

(c) 2011 Haim Michael. All Rights Reserved. 02/07/11

(c) 2011 Haim Michael. All Rights Reserved. 69

 (c) 2011 Haim Michael. All Rights Reserved. 69

Freeing Memory with Destructors

class Line
{
public:
 Line();
 Line(const Line &src);
 Line(Point* a,Point* b);
 ~Line();
 Line& operator=(const Line& other);
 static Line getLine();
 void setPointA(Point* p);
 void setPointB(Point* p);
 Point* getPointA();
 Point* getPointB();
 void details();
 void triple();
private:
 Point* a;
 Point* b;
};

(c) 2011 Haim Michael. All Rights Reserved. 02/07/11

(c) 2011 Haim Michael. All Rights Reserved. 70

 (c) 2011 Haim Michael. All Rights Reserved. 70

Freeing Memory with Destructors

...

Line::Line(const Line &src)
{
 std::cout << "within copy constructor" << std::endl;
 a = new Point(src.a->x,src.b->y);
 b = new Point(src.a->x,src.b->y);
}

Line::~Line()
{
 delete a;
 delete b;
}

...

(c) 2011 Haim Michael. All Rights Reserved. 02/07/11

(c) 2011 Haim Michael. All Rights Reserved. 71

 (c) 2011 Haim Michael. All Rights Reserved. 71

Disabling Pass By Value
● We can disable passing by value and disable assignment by

marking the copy constructor and the operator= definitions

with the private access specifier.

● Doing so, it won't be possible to compile code that that tries to

pass over the object by value, return it from a function or assign

to it.

(c) 2011 Haim Michael. All Rights Reserved. 02/07/11

(c) 2011 Haim Michael. All Rights Reserved. 72

 (c) 2011 Haim Michael. All Rights Reserved. 72

Static Data Members
● Static data member is a data member associated with a class

instead of object.
...
class Rectangle
{

public:
static int sCounter;

 double width;
double height;

}
...

(c) 2011 Haim Michael. All Rights Reserved. 02/07/11

(c) 2011 Haim Michael. All Rights Reserved. 73

 (c) 2011 Haim Michael. All Rights Reserved. 73

Static Data Members
● In order to access a static member we need to prefix it with the

name of the class togeher with the :: operator.
...
std::cout << Rectangle::sCounter;
...

(c) 2011 Haim Michael. All Rights Reserved. 02/07/11

(c) 2011 Haim Michael. All Rights Reserved. 74

 (c) 2011 Haim Michael. All Rights Reserved. 74

Const Data Members
● We can declare our members together with the const modifier.

That will turn them into constants.

● The const data members are usually also static ones. Usually,

it doesn't make sense to keep the same value in all objects.
...
class Car
{
 public:

...
 static const double maxSpeed = 180;
}
...

(c) 2011 Haim Michael. All Rights Reserved. 02/07/11

(c) 2011 Haim Michael. All Rights Reserved. 75

 (c) 2011 Haim Michael. All Rights Reserved. 75

Static Methods
● We can define static methods. Static methods don't apply

specifically to each object. Static methods apply to the class as

a whole.
...
class Rectangle
{

public:
 Rectangle static unite(Rectangle a, Rectangle b);

...
}
...

(c) 2011 Haim Michael. All Rights Reserved. 02/07/11

(c) 2011 Haim Michael. All Rights Reserved. 76

 (c) 2011 Haim Michael. All Rights Reserved. 76

Static Methods
● Calling a static method is done similarly to the way in which we

access static members.
...
Rectangle recA(4,3);
Rectangle recB(5,2);
Rectangle rec = Rectangle::unite(recA,recB);
...

● Static methods cannot access non static members.

(c) 2011 Haim Michael. All Rights Reserved. 02/07/11

(c) 2011 Haim Michael. All Rights Reserved. 77

 (c) 2011 Haim Michael. All Rights Reserved. 77

Const Methods
● We can mark a method with const in order to ensure that it

doesn't change any data member.
...
class Rectangle
{

public:
 double area() const;

...
}
...

(c) 2011 Haim Michael. All Rights Reserved. 02/07/11

(c) 2011 Haim Michael. All Rights Reserved. 78

 (c) 2011 Haim Michael. All Rights Reserved. 78

Const Methods
● Objects marked with const can call const methods only.

Others can call all sorts of methods. Both the ones marked with

const and the ones that arenot.

(c) 2011 Haim Michael. All Rights Reserved. 02/07/11

(c) 2011 Haim Michael. All Rights Reserved. 79

 (c) 2011 Haim Michael. All Rights Reserved. 79

Functions Overloading
● The C++ programming language supports overloading. We can

overload any function, method and constructor as many times

as we want as long as the number and/or the types of the

parameters differ.

(c) 2011 Haim Michael. All Rights Reserved. 02/07/11

(c) 2011 Haim Michael. All Rights Reserved. 80

 (c) 2011 Haim Michael. All Rights Reserved. 80

Functions Overloading

#include "stdio.h"
#include "geometry.h"
#include <iostream>

int main(int argc, char *argv[])
{
 Rectangle rec(8);
 std::cout << rec.area();
 getchar();
 return 0;
}

(c) 2011 Haim Michael. All Rights Reserved. 02/07/11

(c) 2011 Haim Michael. All Rights Reserved. 81

 (c) 2011 Haim Michael. All Rights Reserved. 81

Functions Overloading

class Rectangle
{
public:
 Rectangle();
 Rectangle(double size);
 Rectangle(double w,double h);
 double area();
private:
 double width;
 double height;
};

(c) 2011 Haim Michael. All Rights Reserved. 02/07/11

(c) 2011 Haim Michael. All Rights Reserved. 82

 (c) 2011 Haim Michael. All Rights Reserved. 82

Functions Overloading

#include <iostream>
#include "stdio.h"
#include "geometry.h"

Rectangle::Rectangle()
{
 width = 10;
 height = 10;
}

Rectangle::Rectangle(double size)
{
 if(size>0)
 {
 width = size;
 height = size;
 }
}

(c) 2011 Haim Michael. All Rights Reserved. 02/07/11

(c) 2011 Haim Michael. All Rights Reserved. 83

 (c) 2011 Haim Michael. All Rights Reserved. 83

Functions Overloading

Rectangle::Rectangle(double w, double h)
{
 if(w>0)
 {
 width = w;
 }
 if(h>0)
 {
 height = h;
 }
}

double Rectangle::area()
{
 return width*height;
}

(c) 2011 Haim Michael. All Rights Reserved. 02/07/11

(c) 2011 Haim Michael. All Rights Reserved. 84

 (c) 2011 Haim Michael. All Rights Reserved. 84

Default Parameters
● We can specify default values for function and method

parameters. If the user won't specify arguments for those

parameters the defaults will be used.

● Setting defaults we can do it for a continuous list of parameters

starting from the rightmost parameter only.

(c) 2011 Haim Michael. All Rights Reserved. 02/07/11

(c) 2011 Haim Michael. All Rights Reserved. 85

 (c) 2011 Haim Michael. All Rights Reserved. 85

Default Parameters

#include "stdio.h"
#include "geometry.h"
#include <iostream>

int main(int argc, char *argv[])
{
 Rectangle a(4);
 std::cout << a.area();
 getchar();
 return 0;
}

(c) 2011 Haim Michael. All Rights Reserved. 02/07/11

(c) 2011 Haim Michael. All Rights Reserved. 86

 (c) 2011 Haim Michael. All Rights Reserved. 86

Default Parameters

class Rectangle
{
public:
 Rectangle(double w=10,double h=10);
 double area() {return width*height;}
private:
 double width;
 double height;
};

(c) 2011 Haim Michael. All Rights Reserved. 02/07/11

(c) 2011 Haim Michael. All Rights Reserved. 87

 (c) 2011 Haim Michael. All Rights Reserved. 87

Default Parameters

#include <iostream>
#include "stdio.h"
#include "geometry.h"

Rectangle::Rectangle(double w, double h)
{
 if(w>0)
 {
 width = w;
 }
 if(h>0)
 {
 height = h;
 }
}

(c) 2011 Haim Michael. All Rights Reserved. 02/07/11

(c) 2011 Haim Michael. All Rights Reserved. 88

 (c) 2011 Haim Michael. All Rights Reserved. 88

Inline Methods
● The C++ programming language allows us to define inline

methods. Inline methods are methods the compiler insert their

body directly into the code instead of each and every call for

their execusion.

● The process involved with inline methods is just a simpler

version for using the #define macro.

● We can specify an inline method or a function by placing the

inline keyword infront of its name in the source code file

where we define it.

(c) 2011 Haim Michael. All Rights Reserved. 02/07/11

(c) 2011 Haim Michael. All Rights Reserved. 89

 (c) 2011 Haim Michael. All Rights Reserved. 89

Inline Methods
● We can alternatively include the implementation of the method

within the header file and taking it out from the source code file.

Doing so will have the same result.

(c) 2011 Haim Michael. All Rights Reserved. 02/07/11

(c) 2011 Haim Michael. All Rights Reserved. 90

 (c) 2011 Haim Michael. All Rights Reserved. 90

Inline Methods

#include "stdio.h"
#include "geometry.h"
#include <iostream>

int main(int argc, char *argv[])
{
 Rectangle* rec = new Rectangle(20,5);
 double total = rec->area();
 std::cout << "area is " << total << std::endl;
 getchar();
 return 0;
}

(c) 2011 Haim Michael. All Rights Reserved. 02/07/11

(c) 2011 Haim Michael. All Rights Reserved. 91

 (c) 2011 Haim Michael. All Rights Reserved. 91

Inline Methods

class Rectangle
{
public:
 Rectangle();
 Rectangle(double size);
 Rectangle(double w,double h);
 double area() {return width*height;}
private:
 double width;
 double height;
};

(c) 2011 Haim Michael. All Rights Reserved. 02/07/11

(c) 2011 Haim Michael. All Rights Reserved. 92

 (c) 2011 Haim Michael. All Rights Reserved. 92

Inline Methods
#include <iostream>
#include "stdio.h"
#include "geometry.h"

Rectangle::Rectangle()
{
 width = 10;
 height = 10;
}

Rectangle::Rectangle(double size)
{
 if(size>0)
 {
 width = size;
 height = size;
 }
}

(c) 2011 Haim Michael. All Rights Reserved. 02/07/11

(c) 2011 Haim Michael. All Rights Reserved. 93

 (c) 2011 Haim Michael. All Rights Reserved. 93

Inline Methods

Rectangle::Rectangle(double w, double h)
{
 if(w>0)
 {
 width = w;
 }
 if(h>0)
 {
 height = h;
 }
}

(c) 2011 Haim Michael. All Rights Reserved. 02/07/11

(c) 2011 Haim Michael. All Rights Reserved. 94

 (c) 2011 Haim Michael. All Rights Reserved. 94

Inline Methods
● When we define an inline method the compiler doesn't want to

inline it might silently ignore our directive.

● Inline methods can lead to code bloat. We should use inline

method and functions in a careful way.

(c) 2011 Haim Michael. All Rights Reserved. 02/07/11

(c) 2011 Haim Michael. All Rights Reserved. 95

 (c) 2011 Haim Michael. All Rights Reserved. 95

Nested Classes
● The class definition can include more than just methods and

members. The class definition can include inner classes, inner

structs and inner enums.

● Using the inner class (or the inner struct... or the inner enum)

outside the scope of the outer class depends on their access

specifiers.

● Referring an inner type should be done using its full qualified

name.

(c) 2011 Haim Michael. All Rights Reserved. 02/07/11

(c) 2011 Haim Michael. All Rights Reserved. 96

 (c) 2011 Haim Michael. All Rights Reserved. 96

Nested Classes

#include "stdio.h"
#include "geometry.h"
#include <iostream>

int main(int argc, char *argv[])
{
 Rectangle* rec = new Rectangle(20,5);
 rec->setLocation(Rectangle::Point(4,3));
 rec->getLocation().details();
 getchar();
 return 0;
}

(c) 2011 Haim Michael. All Rights Reserved. 02/07/11

(c) 2011 Haim Michael. All Rights Reserved. 97

 (c) 2011 Haim Michael. All Rights Reserved. 97

Nested Classes
class Rectangle
{
public:
 class Point
 {
 public:
 Point();
 Point(double x, double y);
 void details();
 double x;
 double y;
 };
 Rectangle();
 Rectangle(double size);
 Rectangle(double w,double h);
 double area() {return width*height;}
 void setLocation(Point point);
 Point getLocation();
private:
 double width;
 double height;
 Point location;
};

(c) 2011 Haim Michael. All Rights Reserved. 02/07/11

(c) 2011 Haim Michael. All Rights Reserved. 98

 (c) 2011 Haim Michael. All Rights Reserved. 98

Nested Classes

#include <iostream>
#include "stdio.h"
#include "geometry.h"

Rectangle::Rectangle()
{
 width = 10;
 height = 10;
}

Rectangle::Rectangle(double size)
{
 if(size>0)
 {
 width = size;
 height = size;
 }
}

(c) 2011 Haim Michael. All Rights Reserved. 02/07/11

(c) 2011 Haim Michael. All Rights Reserved. 99

 (c) 2011 Haim Michael. All Rights Reserved. 99

Nested Classes

Rectangle::Rectangle(double w, double h)
{
 if(w>0)
 {
 width = w;
 }
 if(h>0)
 {
 height = h;
 }
}

Rectangle::Point Rectangle::getLocation()
{
 return location;
}

void Rectangle::setLocation(Point point)
{
 location = point;
}

(c) 2011 Haim Michael. All Rights Reserved. 02/07/11

(c) 2011 Haim Michael. All Rights Reserved. 100

 (c) 2011 Haim Michael. All Rights Reserved. 100

Nested Classes

void Rectangle::Point::details()
{
 std::cout << "(" << x << "," << y << ")" <<
std::endl;
}

Rectangle::Point::Point(double x, double y)
{
 this->x = x;
 this->y = y;
}

Rectangle::Point::Point()
{
 this->x = 10;
 this->x = 10;
}

(c) 2011 Haim Michael. All Rights Reserved. 02/07/11

(c) 2011 Haim Michael. All Rights Reserved. 101

 (c) 2011 Haim Michael. All Rights Reserved. 101

The typedef Keyword
● We can use the typedef keyword to create an alias for a data

type.

typedef originalname newname;

(c) 2011 Haim Michael. All Rights Reserved. 02/07/11

(c) 2011 Haim Michael. All Rights Reserved. 102

 (c) 2011 Haim Michael. All Rights Reserved. 102

The typedef Keyword
class Rectangle
{
public:
 class Point
 {
 public:
 Point();
 Point(double x, double y);
 void details();
 double x;
 double y;
 };
 Rectangle();
 Rectangle(double size);
 Rectangle(double w,double h);
 double area() {return width*height;}
 void setLocation(Point point);
 Point getLocation();
private:
 double width;
 double height;
 Point location;
};

(c) 2011 Haim Michael. All Rights Reserved. 02/07/11

(c) 2011 Haim Michael. All Rights Reserved. 103

 (c) 2011 Haim Michael. All Rights Reserved. 103

The typedef Keyword
#include <iostream>
#include "stdio.h"
#include "geometry.h"

Rectangle::Rectangle()
{
 width = 10;
 height = 10;
}

Rectangle::Rectangle(double size)
{
 if(size>0)
 {
 width = size;
 height = size;
 }
}

(c) 2011 Haim Michael. All Rights Reserved. 02/07/11

(c) 2011 Haim Michael. All Rights Reserved. 104

 (c) 2011 Haim Michael. All Rights Reserved. 104

The typedef Keyword
Rectangle::Rectangle(double w, double h)
{
 if(w>0)
 {
 width = w;
 }
 if(h>0)
 {
 height = h;
 }
}

Rectangle::Point Rectangle::getLocation()
{
 return location;
}

void Rectangle::setLocation(Point point)
{
 location = point;
}

(c) 2011 Haim Michael. All Rights Reserved. 02/07/11

(c) 2011 Haim Michael. All Rights Reserved. 105

 (c) 2011 Haim Michael. All Rights Reserved. 105

The typedef Keyword
typedef Rectangle::Point RecPoint;
//void Rectangle::Point::details()
void RecPoint::details()
{
 std::cout << "(" << x << "," << y << ")" << std::endl;
}

//Rectangle::Point::Point(double x, double y)
RecPoint::Point(double x, double y)
{
 this->x = x;
 this->y = y;
}

//Rectangle::Point::Point()
RecPoint::Point()
{
 this->x = 10;
 this->x = 10;
}

(c) 2011 Haim Michael. All Rights Reserved. 02/07/11

(c) 2011 Haim Michael. All Rights Reserved. 106

 (c) 2011 Haim Michael. All Rights Reserved. 106

The typedef Keyword

#include "stdio.h"
#include "geometry.h"
#include <iostream>

int main(int argc, char *argv[])
{
 Rectangle* rec = new Rectangle(20,5);
 rec->setLocation(Rectangle::Point(4,3));
 rec->getLocation().details();
 getchar();
 return 0;
}

(c) 2011 Haim Michael. All Rights Reserved. 02/07/11

(c) 2011 Haim Michael. All Rights Reserved. 107

 (c) 2011 Haim Michael. All Rights Reserved. 107

Friends
● The C++ programming language allows us to declare that other

classeses or nonmember functions are friends. Becoming

friends they can access private and protected members and

methods.
...
Class Car
{

public:
friend class Person;
friend bool checkEngine(const Car& car);

}
...

The Person class is a friend of Car

We can declare a global function within our class together with the word friend.
That will be sufficient both for declaring about the function and for making it a
friend that can access Private and protected members of the class Car.

(c) 2011 Haim Michael. All Rights Reserved. 02/07/11

(c) 2011 Haim Michael. All Rights Reserved. 108

 (c) 2011 Haim Michael. All Rights Reserved. 108

Operators Overloading
● The C++ programming language allows us to overload the

operators we know with a specific definition for our class type.
...
Class Rectangle
{

public:
Rectangle();
Rectangle operator+(Rectangle& other);
double area();

private:
double width;
double height;

}
...

(c) 2011 Haim Michael. All Rights Reserved. 02/07/11

(c) 2011 Haim Michael. All Rights Reserved. 109

 (c) 2011 Haim Michael. All Rights Reserved. 109

Operators Overloading

#include "stdio.h"
#include "geometry.h"
#include <iostream>

int main(int argc, char *argv[])
{
 Rectangle a(2,3);
 Rectangle b(3,4);
 Rectangle c;
 c = a + b;
 std::cout << c.area();
 getchar();
 return 0;
}

(c) 2011 Haim Michael. All Rights Reserved. 02/07/11

(c) 2011 Haim Michael. All Rights Reserved. 110

 (c) 2011 Haim Michael. All Rights Reserved. 110

Operators Overloading

class Rectangle
{
public:
 Rectangle();
 Rectangle(double size);
 Rectangle(double w,double h);
 Rectangle operator+(Rectangle& other);
 double area() {return width*height;}
private:
 double width;
 double height;
};

(c) 2011 Haim Michael. All Rights Reserved. 02/07/11

(c) 2011 Haim Michael. All Rights Reserved. 111

 (c) 2011 Haim Michael. All Rights Reserved. 111

Operators Overloading

#include <iostream>
#include "stdio.h"
#include "geometry.h"

Rectangle::Rectangle()
{
 width = 10;
 height = 10;
}

Rectangle::Rectangle(double size)
{
 if(size>0)
 {
 width = size;
 height = size;
 }
}

(c) 2011 Haim Michael. All Rights Reserved. 02/07/11

(c) 2011 Haim Michael. All Rights Reserved. 112

 (c) 2011 Haim Michael. All Rights Reserved. 112

Operators Overloading

Rectangle::Rectangle(double w, double h)
{
 if(w>0)
 {
 width = w;
 }
 if(h>0)
 {
 height = h;
 }
}

Rectangle Rectangle::operator+(Rectangle& other)
{
 return Rectangle(

this->width+other.width,
this->height+other.height);

}

(c) 2011 Haim Michael. All Rights Reserved. 02/07/11

(c) 2011 Haim Michael. All Rights Reserved. 113

 (c) 2011 Haim Michael. All Rights Reserved. 113

Operators Overloading
● We can alternatively overload the operator by declaring a global

function.

#include "stdio.h"
#include "geometry.h"
#include <iostream>

int main(int argc, char *argv[])
{
 Rectangle a(2,3);
 Rectangle b(3,4);
 Rectangle c;
 c = a + b;
 std::cout << c.area();
 getchar();
 return 0;
}

(c) 2011 Haim Michael. All Rights Reserved. 02/07/11

(c) 2011 Haim Michael. All Rights Reserved. 114

 (c) 2011 Haim Michael. All Rights Reserved. 114

Operators Overloading

class Rectangle
{
public:
 Rectangle();
 Rectangle(double size);
 Rectangle(double w,double h);
 //Rectangle operator+(Rectangle& other);
 double area() {return width*height;}
 friend Rectangle operator+(Rectangle& a,Rectangle& b);
private:
 double width;
 double height;
};

(c) 2011 Haim Michael. All Rights Reserved. 02/07/11

(c) 2011 Haim Michael. All Rights Reserved. 115

 (c) 2011 Haim Michael. All Rights Reserved. 115

Operators Overloading
#include <iostream>
#include "stdio.h"
#include "geometry.h"

Rectangle::Rectangle()
{
 width = 10;
 height = 10;
}

Rectangle::Rectangle(double size)
{
 if(size>0)
 {
 width = size;
 height = size;
 }
}

(c) 2011 Haim Michael. All Rights Reserved. 02/07/11

(c) 2011 Haim Michael. All Rights Reserved. 116

 (c) 2011 Haim Michael. All Rights Reserved. 116

Operators Overloading
Rectangle::Rectangle(double w, double h)
{
 if(w>0)
 {
 width = w;
 }
 if(h>0)
 {
 height = h;
 }
}

Rectangle operator+(Rectangle& a, Rectangle& b)
{
 return Rectangle(a.width+b.width,a.height+b.height);
}

(c) 2011 Haim Michael. All Rights Reserved. 02/07/11

(c) 2011 Haim Michael. All Rights Reserved. 117

 (c) 2011 Haim Michael. All Rights Reserved. 117

Operators Overloading

class Rectangle
{
public:
 Rectangle();
 Rectangle(double size);
 Rectangle(double w,double h);
 //Rectangle operator+(Rectangle& other);
 double area() {return width*height;}
 friend Rectangle operator+(Rectangle& a,Rectangle& b);
private:
 double width;
 double height;
};

(c) 2011 Haim Michael. All Rights Reserved. 02/07/11

(c) 2011 Haim Michael. All Rights Reserved. 118

 (c) 2011 Haim Michael. All Rights Reserved. 118

Operators Overloading
● We can overload all other operators by defining similar

functions.

Rectangle operator+(Rectangle& a, Rectangle& b)
Rectangle operator-(Rectangle& a, Rectangle& b)
Rectangle operator*(Rectangle& a, Rectangle& b)
Rectangle operator\(Rectangle& a, Rectangle& b)
Rectangle operator+=(Rectangle& a, Rectangle& b)
Rectangle operator-=(Rectangle& a, Rectangle& b)
Rectangle operator*=(Rectangle& a, Rectangle& b)
Rectangle operator\=(Rectangle& a, Rectangle& b)
bool operator==(Rectangle& a, Rectangle& b)
bool operator<(Rectangle& a, Rectangle& b)
bool operator>(Rectangle& a, Rectangle& b)
bool operator!=(Rectangle& a, Rectangle& b)
...

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118

