
 (c) 2011 Haim Michael. All Rights Reserved.

Basics

 (c) 2011 Haim Michael. All Rights Reserved.

Comments

#include <iostream>

int main(int argc, char *argv[])
{
 /*
 simple program that prints out hello world

and asks the user to enter 1 for exit.
 */
 int num = 0;
 std::cout << "hello world";
 while(num!=1)
 {
 //asking the user to enter 1 for exit
 std::cout << "\n\nenter 1 to exit\n";
 std::cin >> num;
 }
 return 0;
}

C++ Style Comments

C Style Comments

 (c) 2011 Haim Michael. All Rights Reserved.

Program Building
● Building a C++ program includes three stages. The first involves

with the preprocessor that recognizes metainformation within

the code. The second involves with the compiler that compiles

the source code into machine readable object files. The thrid

involves with linking the objects into a single application.

 (c) 2011 Haim Michael. All Rights Reserved.

Preprocessor Directives
● The preprocessor directives start with the # character. They

instruct the preprocessor to perform various operations before

the compilation starts.

● The include directive is one of the most commonly in use

preprocessor directive.

 (c) 2011 Haim Michael. All Rights Reserved.

The include Directive
● One of the common preprocessor directives is the include

directive. It tells the preprocessor to take everything that exists

in a specific header file and embed it within the current file.

● We will usually use the header files for declaring functions that

will be defined in another separated file.

● One of the common header files we will usually include in our

code is the iostream file. It declares the input and th eoutput

mechanisms in C++.

 (c) 2011 Haim Michael. All Rights Reserved.

The include Directive
● In C, the names of the included files usually end with .h (e.g.

<stdio.h>).

● In C++ the suffix is omitted (e.g. <iostream>).

 (c) 2011 Haim Michael. All Rights Reserved.

The main Function
● This function is the entry point of the application. Its returned

value is of the type int.

● Its returned value indicates about the program status. It is the

exit status of the process. When the returned value is 0 it

means that the process has terminated successfully.

 (c) 2011 Haim Michael. All Rights Reserved.

The main Function

#include <iostream>

int main(int argc, char *argv[])
{
 std::cout << "hello world";
 return 0;
}

http://www.youtube.com/watch?v=fY5P0o9kxMw

 (c) 2011 Haim Michael. All Rights Reserved.

I/O Streams
● This printf() function belongs to C. When coding in C++ we

use std:cout instead.

● We can use the << operator for passing over multiple data of

varying types to be sent down the output stream sequentially on

a single line of code.

 (c) 2011 Haim Michael. All Rights Reserved.

I/O Streams
● The std:endl represents the end of line character. When the

output stream encounters std:endl it will output everything

that has been sent down the stream and move forward to the

next line. Using std:endl is the same as using '\n'.

● We can use std::cin for getting input from the user.

 (c) 2011 Haim Michael. All Rights Reserved.

I/O Streams
#include <iostream>

int main(int argc, char *argv[])
{
 int a = 0, b = 0, c, num = 0;
 std::cout << "simple calculator"

<< std::endl << "-----------------" << std::endl;
 std::cout << "a=";
 std::cin >> a;
 std::cout << "b=";
 std::cin >> b;
 c = a + b;
 std::cout << "sum=" << c << std::endl;
 while(num!=1)
 {
 //asking the user to enter 1 for exit
 std::cout << "\n\nenter 1 to exit\n";
 std::cin >> num;
 }
 return 0;
}

http://www.youtube.com/watch?v=T3CzZFbb2Y0

 (c) 2011 Haim Michael. All Rights Reserved.

Namespaces
● We can use namespaces for solving the problem of naming

conflicts between different pieces of code.

● We can specify the namespace both in *.h and in *.cpp files.

 (c) 2011 Haim Michael. All Rights Reserved.

Namespaces

#include <iostream>

namespace records
{
 class Person
 {
 public:
 Person();
 void info(); //print out information about the person
 void setFirstName(std::string fName);
 std::string getFirstName();
 void setLastName(std::string lName);
 std::string getLastName();
 void setId(int idVal);
 int getId();
 void details();
 private:
 std::string firstName;
 std::string lastName;
 int id;
 };
}

person.h

 (c) 2011 Haim Michael. All Rights Reserved.

Namespaces

#include "person.h"
#include <iostream>

using namespace std;

namespace records
{
 Person::Person()
 {
 firstName = "";
 lastName = "";
 id = 0;
 }
 void Person::setFirstName(string fName)
 {
 firstName = fName;
 }
 void Person::setLastName(string lName)
 {
 lastName = lName;
 }

person.cpp

 (c) 2011 Haim Michael. All Rights Reserved.

Namespaces

 void Person::setId(int idVal)
 {
 id = idVal;
 }
 string Person::getLastName()
 {
 return lastName;
 }
 string Person::getFirstName()
 {
 return firstName;
 }
 int Person::getId()
 {
 return id;
 }
 void Person::details()
 {
 cout << firstName << " " << lastName << " " << id << std::endl;
 }
}

 (c) 2011 Haim Michael. All Rights Reserved.

Namespaces

#include <iostream>
#include "person.h"

using namespace records;

int main(int argc, char *argv[])
{
 int num = 0;
 Person *ob = new Person();
 ob->setFirstName("dave");
 ob->setLastName("bush");
 ob->setId(123123);
 ob->details();
 std::cin >> num;
}

main.cpp

 (c) 2011 Haim Michael. All Rights Reserved.

Namespaces

 (c) 2011 Haim Michael. All Rights Reserved.

Namespaces
● Any code that falls within a namespace block can call other

code within the same namespace without explicitly prepending

the namespace.

 (c) 2011 Haim Michael. All Rights Reserved.

The using Directive
● We can use the using directive in order to avoid prepending

the namespaces.

#include <iostream>
#include "person.h"

using namespace records;

int main(int argc, char *argv[])
{
 int num = 0;
 Person *ob = new Person(); //avoiding records::Person
 ob->setFirstName("dave");
 ob->setLastName("bush");
 ob->setId(123123);
 ob->details();
 std::cin >> num;
}

 (c) 2011 Haim Michael. All Rights Reserved.

The using Directive
● Each single source file can contain multiple using directives.

Nevertheless, doing so might place us back to the same names

conflicts problem we try to avoid.

 (c) 2011 Haim Michael. All Rights Reserved.

The using Directive
● The using directive can also be used to refer a particular item

within the namespace.

#include <iostream>
#include "person.h"

using std::cout;

int main(int argc, char *argv[])
{
 int num = 0;
 cout << "hello world";
 std::cin >> num;
}

http://www.youtube.com/watch?v=qryp1R8Ufzo

 (c) 2011 Haim Michael. All Rights Reserved.

Variables
● We can declare our variables anywhere in our code and use

them within the current block below the line where they were

declared.

● We can declare a variable without assigning any value to it. We

can alternatively assign them with an initial value when we

declare them. If we don't initialize a variable it will hold garbage.

int numA;
int numB = 123;

 (c) 2011 Haim Michael. All Rights Reserved.

Variables
● The most common types include the following: int, short,

long, unsigned int, unsigned short, unsigned long,

float, double, char and bool.

● The C++ programming language doesn't provide a basic string

type. Nevertheless, a standard implementation of string is

provided as part of the standard library.

 (c) 2011 Haim Michael. All Rights Reserved.

Casting
● We can conver (cast) the type of a given value into another

type. There are three possible syntax options for casting.

int num = 4;
bool bobo = (bool) num;
bool bobo = bool (num);
bool bobo = static_cast<bool>(num);

http://www.youtube.com/watch?v=bwV1_rTTsT0

 (c) 2011 Haim Michael. All Rights Reserved.

Casting
● In some cases an automatic casting takes place. We should be

aware of the risk for loosing data.

#include <iostream>
#include "person.h"

int main(int argc, char *argv[])
{
 int num = 0;
 double number = 2.5;
 num = number;
 std::cout << "num=" << num << std::endl;
 std::cin >> num;
 return 0;
}

http://www.youtube.com/watch?v=B5KX38hKTdY

 (c) 2011 Haim Michael. All Rights Reserved.

Operators
● The most commonly in use operators include the following:

=, !, +, -, *, /, %, ++, --, +=, -=, *=, /=, %=, &, &=, |, <<, >>,

<<=, >>=, ^, ^=,

 (c) 2011 Haim Michael. All Rights Reserved.

Enumerated Types
● Enumerated types allow us to define our own sequences.

Behind the scenes, an enumerated type value is just an integer.

#include <iostream>
#include "person.h"
#include "stdio.h"

int main(int argc, char *argv[])
{
 typedef enum {summer,autumn,winter,spring} Season;
 Season temp = winter;
 std::cout << temp << std::endl;
 temp = summer;
 std::cout << temp << std::endl;
 getchar();
}

http://www.youtube.com/watch?v=HkZHu81HGDw

 (c) 2011 Haim Michael. All Rights Reserved.

Structs
● Using structs we can encapsulate one or more existing types

into a new type, such as a new type that describes a database

record.

● Once we define a new struct type, each variable of that new

struct type will include all fields we specified in our declaration

for that new struct type.

 (c) 2011 Haim Michael. All Rights Reserved.

Structs

#include <iostream>

namespace infosys
{
 typedef struct
 {
 std::string title;
 std::string author;
 int pages;
 }
 Book;
}

http://www.youtube.com/watch?v=sOfI9-1TMpo

 (c) 2011 Haim Michael. All Rights Reserved.

Structs

#include <iostream>
#include "book.h"
#include "stdio.h"

using namespace infosys;

int main(int argc, char *argv[])
{
 Book coreScala;
 coreScala.author = "George Benson";
 coreScala.pages = 254;
 coreScala.title = "Core Scala";
 std::cout << coreScala.title << " was written by "

<< coreScala.author << std::endl;
 getchar();
}

 (c) 2011 Haim Michael. All Rights Reserved.

Structs

 (c) 2011 Haim Michael. All Rights Reserved.

The if..else Statement
#include <iostream>
#include "stdio.h"

int main(int argc, char *argv[])
{
 int num = 7.2;
 if(num>0)
 {
 std::cout << "positive" << std::endl;
 }
 else
 {
 if(num<0)
 {
 std::cout << "negative" << std::endl;
 }
 else
 {
 std::cout << "zero" << std::endl;
 }
 }
 getchar();
 return 0;
}

http://www.youtube.com/watch?v=TXypBQTLxlM

 (c) 2011 Haim Michael. All Rights Reserved.

The Trenary Operator

(condition)?expression1:expression2

The Condition We Want To Check

The Value of The Whole Expression if Condition is True

The Value of The Whole Expression if Condition is False

 (c) 2011 Haim Michael. All Rights Reserved.

The Trenary Operator

#include <iostream>
#include "book.h"
#include "stdio.h"

int main(int argc, char *argv[])
{
 int num = 7.2;
 std::string msg = (num>0)?"positive":(num<0)?"negative":"zero";
 std::cout << msg;
 getchar();
 return 0;
}

http://www.youtube.com/watch?v=5E1-KN8C4xQ

 (c) 2011 Haim Michael. All Rights Reserved.

The Trenary Operator

The Output

 (c) 2011 Haim Michael. All Rights Reserved.

The Switch Case Statement

#include <iostream>
#include "book.h"
#include "stdio.h"

int main(int argc, char *argv[])
{
 int num = 2;
 switch(num)
 {
 case 1:
 std::cout << "one" << std::endl;
 break;
 case 2:
 std::cout << "two" << std::endl;
 break;

http://www.youtube.com/watch?v=Q9yL2oTGhIc

 (c) 2011 Haim Michael. All Rights Reserved.

The Switch Case Statement

 case 3:
 std::cout << "three" << std::endl;
 break;
 default:
 std::cout << "other" << std::endl;
 break;
 }
 getchar();
 return 0;
}

 (c) 2011 Haim Michael. All Rights Reserved.

The Switch Case Statement

The Output

 (c) 2011 Haim Michael. All Rights Reserved.

Conditional Operators
● The conditional operators purpose is to compare two

expressions. They result in true or false.

● The C++ programming language includes the following

conditional operators: <, <=, >, >=, ==, <, !=, !, &, |, && and

||.

● The && and the || operators are short circuit ones. When using

these operators the evaluation stops when the final result is

certain.

 (c) 2011 Haim Michael. All Rights Reserved.

The while Loop
#include <iostream>
#include "book.h"
#include "stdio.h"

int main(int argc, char *argv[])
{
 int num=1;
 while(num<=10)
 {
 std::cout<<num<<std::endl;
 num++;
 }
 getchar();
 return 0;
}

http://www.youtube.com/watch?v=00_xP1GfUHU

 (c) 2011 Haim Michael. All Rights Reserved.

The do..while Loop
#include <iostream>
#include "book.h"
#include "stdio.h"

int main(int argc, char *argv[])
{
 int num=1;
 do
 {
 std::cout<<num<<std::endl;
 num++;
 }
 while(num<=10);
 getchar();
 return 0;
}

http://www.youtube.com/watch?v=NmLWDAOmev4

 (c) 2011 Haim Michael. All Rights Reserved.

The for Loop
#include <iostream>
#include "book.h"
#include "stdio.h"

int main(int argc, char *argv[])
{
 for(int i=1; i<=10; i++)
 {
 std::cout << i << std::endl;
 }
 getchar();
 return 0;
}

http://www.youtube.com/watch?v=UHFJbZW6DcY

 (c) 2011 Haim Michael. All Rights Reserved.

Arrays
● An array holds a series of values. The values should be of the

same type. We can access each one of the values by its

position in the array.

int vec[10];
vec[0] = 12;
vec[1] = vec[0] + 3;

 (c) 2011 Haim Michael. All Rights Reserved.

Arrays
● When declaring an array we must specify its size. Once the size

is specified we cannot change it.

● We cannot specify the size to be the value of a variable. It must

be a constant value.

● The first element of the array is always at position 0. The last

element of the array is always at position equals to the size of

the array minus 1.

 (c) 2011 Haim Michael. All Rights Reserved.

Arrays
#include <iostream>
#include "book.h"
#include "stdio.h"

int main(int argc, char *argv[])
{
 int vec[6];
 vec[0] = 1;
 vec[1] = 1;
 vec[2] = vec[1] + vec[0];
 vec[3] = vec[2] + vec[1];
 vec[4] = vec[3] + vec[2];
 vec[5] = vec[4] + vec[3];
 for(int i=0; i<6; i++)
 {
 std::cout << vec[i] << std::endl;
 }
 getchar();
 return 0;
}

http://www.youtube.com/watch?v=zIQW_yqT30I

 (c) 2011 Haim Michael. All Rights Reserved.

Functions
● We usually define functions in order to make the program more

understandable. Decomposing the code into concise functions

eases our way in developing our program and in its

maintenance.

● When the function is been used within the same file where it

was defined there is no need in a header file.

● When the function is been used within other files as well we

should declare it within a header file and place its definition in a

separated source file.

 (c) 2011 Haim Michael. All Rights Reserved.

Functions
● We usually define functions in order to make the program more

understandable. Decomposing the code into concise functions

eases our way in developing our program and in its

maintenance.

● When the function is been used within the same file where it

was defined there is no need in a header file.

● When the function is been used within other files as well we

should declare it within a header file and place its definition in a

separated source file.

 (c) 2011 Haim Michael. All Rights Reserved.

Functions

double sum(double a, double b);
double multiply(double a, double b);
double divide(double a, double b);
double difference(double a, double b);

utils.h

http://www.youtube.com/watch?v=cK94iCHFki4

 (c) 2011 Haim Michael. All Rights Reserved.

Functions

double sum(double a, double b)
{
 return a+b;
}

double multiply(double a, double b)
{
 return a*b;
}

double divide(double a, double b)
{
 return a/b;
}

double difference(double a, double b)
{
 return a-b;
}

utils.cpp

 (c) 2011 Haim Michael. All Rights Reserved.

Functions

#include <iostream>
#include "stdio.h"
#include "utils.h"

int main(int argc, char *argv[])
{
 std::cout << sum(3,5) << std::endl;
 std::cout << multiply(3,5) << std::endl;
 std::cout << divide(3,5) << std::endl;
 std::cout << difference(3,5) << std::endl;
 getchar();
 return 0;
}

main.cpp

 (c) 2011 Haim Michael. All Rights Reserved.

The Heap and The Stack
● The memory our application uses is composed of two parts.

The heap and the stack.

● The stack works as a collection of cards. Each time there is a

call for executing a function a new card that holds the memory

required for the new execution is added on top of the stack.

● The heap is the area of memory we use when dynamically

allocating new memory.

 (c) 2011 Haim Michael. All Rights Reserved.

Pointers
● Pointer is a data type that its value (memory address) refers

directly to another value stored in another place in the memory

we work with.

● We can use the new operator for allocating a new memory area

in the heap. The returned value is the address of that area.

 (c) 2011 Haim Michael. All Rights Reserved.

Pointers

#include <iostream>
#include "stdio.h"
#include "utils.h"
int main(int argc, char *argv[])
{
 int* num = new int;
 *num = 5;
 int* other = num;
 std::cout << *other << std::endl;
 getchar();
}

http://www.youtube.com/watch?v=uAHfM3SviF0

 (c) 2011 Haim Michael. All Rights Reserved.

Pointers
● Placing the & operator together with a variable we shall get its

address.

● Placing the * operator together with a variable that holds an

address we shall get the value at that address.

 (c) 2011 Haim Michael. All Rights Reserved.

Pointers

#include <iostream>
#include "stdio.h"
#include "utils.h"
int main(int argc, char *argv[])
{
 int a = 8;
 int* temp = &a;
 *temp = 9;
 std::cout << a;
 getchar();
}

http://www.youtube.com/watch?v=m7tY39WLGmI

 (c) 2011 Haim Michael. All Rights Reserved.

Pointers
● The -> (arrow) operator allows us an easy usage of pointers.

#include <iostream>
#include "stdio.h"
#include "rectangle.h"

int main(int argc, char *argv[])
{
 Rectangle *ob = new Rectangle();
 ob->setWidth(4);
 ob->setHeight(3);
 std::cout << ob->area() << std::endl;
 getchar();
 return 0;
}

 (c) 2011 Haim Michael. All Rights Reserved.

Pointers

class Rectangle
{
public:
 Rectangle();
 void setWidth(double w);
 void setHeight(double h);
 double area();
private:
 double width;
 double height;
};

 (c) 2011 Haim Michael. All Rights Reserved.

Pointers
#include "rectangle.h"

Rectangle::Rectangle()
{
}

void Rectangle::setWidth(double w)
{
 if(w>0) width=w;
}

void Rectangle::setHeight(double h)
{
 if(h>0) height=h;
}

double Rectangle::area()
{
 return width*height;
}

 (c) 2011 Haim Michael. All Rights Reserved.

Pointers

The Output

 (c) 2011 Haim Michael. All Rights Reserved.

The Heap and The Stack
● The way the stack works the compiler must be able to

determine the exact required memory size during the

compilation.

● For that reason, it is impossible to create an array that its size is

unknown during the compilation time.

...
int size = 10;
int vec[size]; //doesn't compile!
...

 (c) 2011 Haim Michael. All Rights Reserved.

The Heap and The Stack
● Although some compilers do support that, the C++ spec still

wasn't updated and most compilers don't support it.

● The solution involves with allocating the array dynamically.

...
int* vec;
vec = new int[size];
...

● Once the memory is allocated we can use the array just as any

other array.

 (c) 2011 Haim Michael. All Rights Reserved.

Strings
● We can represent a string the same way it was done in C. Each

string as an array of characters.
...
char arr[10] = "hello friends";
char* arr = "hello friends";
...

● We can alternatively use the std::string type. This type

wraps the array of characters.
...
std::string str = "hello friends";
...

 (c) 2011 Haim Michael. All Rights Reserved.

By Reference
● We can use the & operator for specifying parameters we want

to get their values by reference.

#include <iostream>
#include "stdio.h"

void doSomething(int &num)
{
 num++;
}

int main(int argc, char *argv[])
{
 int temp = 5;
 doSomething(temp);
 std::cout << temp;
 getchar();
 return 0;
}

http://www.youtube.com/watch?v=cil5nxQzeRQ

 (c) 2011 Haim Michael. All Rights Reserved.

Exceptions Handling
● An exception is an unexpected situation. When an exceptional

situation is detected an exception is thrown. Another piece of

code can catch that exception and respond.

● When the throw command is executed the funciton

immediately terminates and nothing is returned.

● If the code where the exception was thrown is surrounded with

try and catch block then the catch segment will get the

exception and handle it.

 (c) 2011 Haim Michael. All Rights Reserved.

Exceptions Handling

#include <iostream>
#include "stdio.h"

int divide(int a, int b)
{
 if (b==0) throw std::exception();
 return a/b;
}

 (c) 2011 Haim Michael. All Rights Reserved.

Exceptions Handling

int main(int argc, char *argv[])
{
 try
 {
 int temp = 0;
 temp = divide(44,2);
 std::cout << temp << std::endl;
 temp = divide(5,0);
 std::cout << temp << std::endl;
 }
 catch(std::exception e)
 {
 std::cout << "an exception was caught: " << e.what();
 }
 getchar();
 return 0;
}

 (c) 2011 Haim Michael. All Rights Reserved.

Exceptions Handling

The Output

 (c) 2011 Haim Michael. All Rights Reserved.

Constants
● Defining a variable together with the const keyword ensures

that the assigned value cannot be changed.

#include <iostream>
#include "stdio.h"
int main(int argc, char *argv[])
{
 const int num = 5;

//num = 9;
 getchar();
 return 0;
}

http://www.youtube.com/watch?v=uTCdsfO41uw

 (c) 2011 Haim Michael. All Rights Reserved.

Constants
● Defining a parameter together with the const keyword ensures

that the passed over value won't chang.

#include <iostream>
#include "stdio.h"
int doSomething(const int* temp)
{
 *temp = 99;
 int total = 2 * *temp;
 return total;
}
int main(int argc, char *argv[])
{
 int num = 5;

...
}

http://www.youtube.com/watch?v=-XZgnGD11_k

 (c) 2011 Haim Michael. All Rights Reserved.

Object Oriented Programming
● C++ is an object oriented programming language. We can

define classes and instantiate them.

● The declaration of the class should be within a separated

header file.

● The definition should be within a separated source code cpp file

that its name is identical to the name of the header file.

 (c) 2011 Haim Michael. All Rights Reserved.

Object Oriented Programming

#include <iostream>

namespace records
{
 class Person
 {
 public:
 Person();
 void info(); //print out information about the person
 void setFirstName(std::string fName);
 std::string getFirstName();
 void setLastName(std::string lName);
 std::string getLastName();
 void setId(int idVal);
 int getId();
 void details();
 private:
 std::string firstName;
 std::string lastName;
 int id;
 };
}

person.h

 (c) 2011 Haim Michael. All Rights Reserved.

Object Oriented Programming

#include "person.h"
#include <iostream>

using namespace std;

namespace records
{
 Person::Person()
 {
 firstName = "";
 lastName = "";
 id = 0;
 }
 void Person::setFirstName(string fName)
 {
 firstName = fName;
 }
 void Person::setLastName(string lName)
 {
 lastName = lName;
 }

person.cpp

 (c) 2011 Haim Michael. All Rights Reserved.

Object Oriented Programming

 void Person::setId(int idVal)
 {
 id = idVal;
 }
 string Person::getLastName()
 {
 return lastName;
 }
 string Person::getFirstName()
 {
 return firstName;
 }
 int Person::getId()
 {
 return id;
 }
 void Person::details()
 {
 cout << firstName << " " << lastName << " " << id << std::endl;
 }
}

 (c) 2011 Haim Michael. All Rights Reserved.

Object Oriented Programming

#include <iostream>
#include "person.h"

using namespace records;

int main(int argc, char *argv[])
{
 int num = 0;
 Person *ob = new Person();
 ob->setFirstName("dave");
 ob->setLastName("bush");
 ob->setId(123123);
 ob->details();
 std::cin >> num;
}

main.cpp

 (c) 2011 Haim Michael. All Rights Reserved.

Object Oriented Programming

(c) 2011 Haim Michael. All Rights Reserved. 02/04/11

(c) 2011 Haim Michael. All Rights Reserved. 1

 (c) 2011 Haim Michael. All Rights Reserved. 1

Basics

(c) 2011 Haim Michael. All Rights Reserved. 02/04/11

(c) 2011 Haim Michael. All Rights Reserved. 2

 (c) 2011 Haim Michael. All Rights Reserved. 2

Comments

#include <iostream>

int main(int argc, char *argv[])
{
 /*
 simple program that prints out hello world

and asks the user to enter 1 for exit.
 */
 int num = 0;
 std::cout << "hello world";
 while(num!=1)
 {
 //asking the user to enter 1 for exit
 std::cout << "\n\nenter 1 to exit\n";
 std::cin >> num;
 }
 return 0;
}

C++ Style Comments

C Style Comments

(c) 2011 Haim Michael. All Rights Reserved. 02/04/11

(c) 2011 Haim Michael. All Rights Reserved. 3

 (c) 2011 Haim Michael. All Rights Reserved. 3

Program Building
● Building a C++ program includes three stages. The first involves

with the preprocessor that recognizes metainformation within

the code. The second involves with the compiler that compiles

the source code into machine readable object files. The thrid

involves with linking the objects into a single application.

(c) 2011 Haim Michael. All Rights Reserved. 02/04/11

(c) 2011 Haim Michael. All Rights Reserved. 4

 (c) 2011 Haim Michael. All Rights Reserved. 4

Preprocessor Directives
● The preprocessor directives start with the # character. They

instruct the preprocessor to perform various operations before

the compilation starts.

● The include directive is one of the most commonly in use

preprocessor directive.

(c) 2011 Haim Michael. All Rights Reserved. 02/04/11

(c) 2011 Haim Michael. All Rights Reserved. 5

 (c) 2011 Haim Michael. All Rights Reserved. 5

The include Directive
● One of the common preprocessor directives is the include

directive. It tells the preprocessor to take everything that exists

in a specific header file and embed it within the current file.

● We will usually use the header files for declaring functions that

will be defined in another separated file.

● One of the common header files we will usually include in our

code is the iostream file. It declares the input and th eoutput

mechanisms in C++.

(c) 2011 Haim Michael. All Rights Reserved. 02/04/11

(c) 2011 Haim Michael. All Rights Reserved. 6

 (c) 2011 Haim Michael. All Rights Reserved. 6

The include Directive
● In C, the names of the included files usually end with .h (e.g.

<stdio.h>).

● In C++ the suffix is omitted (e.g. <iostream>).

(c) 2011 Haim Michael. All Rights Reserved. 02/04/11

(c) 2011 Haim Michael. All Rights Reserved. 7

 (c) 2011 Haim Michael. All Rights Reserved. 7

The main Function
● This function is the entry point of the application. Its returned

value is of the type int.

● Its returned value indicates about the program status. It is the

exit status of the process. When the returned value is 0 it

means that the process has terminated successfully.

(c) 2011 Haim Michael. All Rights Reserved. 02/04/11

(c) 2011 Haim Michael. All Rights Reserved. 8

 (c) 2011 Haim Michael. All Rights Reserved. 8

The main Function

#include <iostream>

int main(int argc, char *argv[])
{
 std::cout << "hello world";
 return 0;
}

(c) 2011 Haim Michael. All Rights Reserved. 02/04/11

(c) 2011 Haim Michael. All Rights Reserved. 9

 (c) 2011 Haim Michael. All Rights Reserved. 9

I/O Streams
● This printf() function belongs to C. When coding in C++ we

use std:cout instead.

● We can use the << operator for passing over multiple data of

varying types to be sent down the output stream sequentially on

a single line of code.

(c) 2011 Haim Michael. All Rights Reserved. 02/04/11

(c) 2011 Haim Michael. All Rights Reserved. 10

 (c) 2011 Haim Michael. All Rights Reserved. 10

I/O Streams
● The std:endl represents the end of line character. When the

output stream encounters std:endl it will output everything

that has been sent down the stream and move forward to the

next line. Using std:endl is the same as using '\n'.

● We can use std::cin for getting input from the user.

(c) 2011 Haim Michael. All Rights Reserved. 02/04/11

(c) 2011 Haim Michael. All Rights Reserved. 11

 (c) 2011 Haim Michael. All Rights Reserved. 11

I/O Streams
#include <iostream>

int main(int argc, char *argv[])
{
 int a = 0, b = 0, c, num = 0;
 std::cout << "simple calculator"

<< std::endl << "-----------------" << std::endl;
 std::cout << "a=";
 std::cin >> a;
 std::cout << "b=";
 std::cin >> b;
 c = a + b;
 std::cout << "sum=" << c << std::endl;
 while(num!=1)
 {
 //asking the user to enter 1 for exit
 std::cout << "\n\nenter 1 to exit\n";
 std::cin >> num;
 }
 return 0;
}

(c) 2011 Haim Michael. All Rights Reserved. 02/04/11

(c) 2011 Haim Michael. All Rights Reserved. 12

 (c) 2011 Haim Michael. All Rights Reserved. 12

Namespaces
● We can use namespaces for solving the problem of naming

conflicts between different pieces of code.

● We can specify the namespace both in *.h and in *.cpp files.

(c) 2011 Haim Michael. All Rights Reserved. 02/04/11

(c) 2011 Haim Michael. All Rights Reserved. 13

 (c) 2011 Haim Michael. All Rights Reserved. 13

Namespaces

#include <iostream>

namespace records
{
 class Person
 {
 public:
 Person();
 void info(); //print out information about the person
 void setFirstName(std::string fName);
 std::string getFirstName();
 void setLastName(std::string lName);
 std::string getLastName();
 void setId(int idVal);
 int getId();
 void details();
 private:
 std::string firstName;
 std::string lastName;
 int id;
 };
}

person.h

(c) 2011 Haim Michael. All Rights Reserved. 02/04/11

(c) 2011 Haim Michael. All Rights Reserved. 14

 (c) 2011 Haim Michael. All Rights Reserved. 14

Namespaces

#include "person.h"
#include <iostream>

using namespace std;

namespace records
{
 Person::Person()
 {
 firstName = "";
 lastName = "";
 id = 0;
 }
 void Person::setFirstName(string fName)
 {
 firstName = fName;
 }
 void Person::setLastName(string lName)
 {
 lastName = lName;
 }

person.cpp

(c) 2011 Haim Michael. All Rights Reserved. 02/04/11

(c) 2011 Haim Michael. All Rights Reserved. 15

 (c) 2011 Haim Michael. All Rights Reserved. 15

Namespaces

 void Person::setId(int idVal)
 {
 id = idVal;
 }
 string Person::getLastName()
 {
 return lastName;
 }
 string Person::getFirstName()
 {
 return firstName;
 }
 int Person::getId()
 {
 return id;
 }
 void Person::details()
 {
 cout << firstName << " " << lastName << " " << id << std::endl;
 }
}

(c) 2011 Haim Michael. All Rights Reserved. 02/04/11

(c) 2011 Haim Michael. All Rights Reserved. 16

 (c) 2011 Haim Michael. All Rights Reserved. 16

Namespaces

#include <iostream>
#include "person.h"

using namespace records;

int main(int argc, char *argv[])
{
 int num = 0;
 Person *ob = new Person();
 ob->setFirstName("dave");
 ob->setLastName("bush");
 ob->setId(123123);
 ob->details();
 std::cin >> num;
}

main.cpp

(c) 2011 Haim Michael. All Rights Reserved. 02/04/11

(c) 2011 Haim Michael. All Rights Reserved. 17

 (c) 2011 Haim Michael. All Rights Reserved. 17

Namespaces

(c) 2011 Haim Michael. All Rights Reserved. 02/04/11

(c) 2011 Haim Michael. All Rights Reserved. 18

 (c) 2011 Haim Michael. All Rights Reserved. 18

Namespaces
● Any code that falls within a namespace block can call other

code within the same namespace without explicitly prepending

the namespace.

(c) 2011 Haim Michael. All Rights Reserved. 02/04/11

(c) 2011 Haim Michael. All Rights Reserved. 19

 (c) 2011 Haim Michael. All Rights Reserved. 19

The using Directive
● We can use the using directive in order to avoid prepending

the namespaces.

#include <iostream>
#include "person.h"

using namespace records;

int main(int argc, char *argv[])
{
 int num = 0;
 Person *ob = new Person(); //avoiding records::Person
 ob->setFirstName("dave");
 ob->setLastName("bush");
 ob->setId(123123);
 ob->details();
 std::cin >> num;
}

(c) 2011 Haim Michael. All Rights Reserved. 02/04/11

(c) 2011 Haim Michael. All Rights Reserved. 20

 (c) 2011 Haim Michael. All Rights Reserved. 20

The using Directive
● Each single source file can contain multiple using directives.

Nevertheless, doing so might place us back to the same names

conflicts problem we try to avoid.

(c) 2011 Haim Michael. All Rights Reserved. 02/04/11

(c) 2011 Haim Michael. All Rights Reserved. 21

 (c) 2011 Haim Michael. All Rights Reserved. 21

The using Directive
● The using directive can also be used to refer a particular item

within the namespace.

#include <iostream>
#include "person.h"

using std::cout;

int main(int argc, char *argv[])
{
 int num = 0;
 cout << "hello world";
 std::cin >> num;
}

(c) 2011 Haim Michael. All Rights Reserved. 02/04/11

(c) 2011 Haim Michael. All Rights Reserved. 22

 (c) 2011 Haim Michael. All Rights Reserved. 22

Variables
● We can declare our variables anywhere in our code and use

them within the current block below the line where they were

declared.

● We can declare a variable without assigning any value to it. We

can alternatively assign them with an initial value when we

declare them. If we don't initialize a variable it will hold garbage.

int numA;
int numB = 123;

(c) 2011 Haim Michael. All Rights Reserved. 02/04/11

(c) 2011 Haim Michael. All Rights Reserved. 23

 (c) 2011 Haim Michael. All Rights Reserved. 23

Variables
● The most common types include the following: int, short,

long, unsigned int, unsigned short, unsigned long,

float, double, char and bool.

● The C++ programming language doesn't provide a basic string

type. Nevertheless, a standard implementation of string is

provided as part of the standard library.

(c) 2011 Haim Michael. All Rights Reserved. 02/04/11

(c) 2011 Haim Michael. All Rights Reserved. 24

 (c) 2011 Haim Michael. All Rights Reserved. 24

Casting
● We can conver (cast) the type of a given value into another

type. There are three possible syntax options for casting.

int num = 4;
bool bobo = (bool) num;
bool bobo = bool (num);
bool bobo = static_cast<bool>(num);

(c) 2011 Haim Michael. All Rights Reserved. 02/04/11

(c) 2011 Haim Michael. All Rights Reserved. 25

 (c) 2011 Haim Michael. All Rights Reserved. 25

Casting
● In some cases an automatic casting takes place. We should be

aware of the risk for loosing data.

#include <iostream>
#include "person.h"

int main(int argc, char *argv[])
{
 int num = 0;
 double number = 2.5;
 num = number;
 std::cout << "num=" << num << std::endl;
 std::cin >> num;
 return 0;
}

(c) 2011 Haim Michael. All Rights Reserved. 02/04/11

(c) 2011 Haim Michael. All Rights Reserved. 26

 (c) 2011 Haim Michael. All Rights Reserved. 26

Operators
● The most commonly in use operators include the following:

=, !, +, -, *, /, %, ++, --, +=, -=, *=, /=, %=, &, &=, |, <<, >>,

<<=, >>=, ^, ^=,

(c) 2011 Haim Michael. All Rights Reserved. 02/04/11

(c) 2011 Haim Michael. All Rights Reserved. 27

 (c) 2011 Haim Michael. All Rights Reserved. 27

Enumerated Types
● Enumerated types allow us to define our own sequences.

Behind the scenes, an enumerated type value is just an integer.

#include <iostream>
#include "person.h"
#include "stdio.h"

int main(int argc, char *argv[])
{
 typedef enum {summer,autumn,winter,spring} Season;
 Season temp = winter;
 std::cout << temp << std::endl;
 temp = summer;
 std::cout << temp << std::endl;
 getchar();
}

(c) 2011 Haim Michael. All Rights Reserved. 02/04/11

(c) 2011 Haim Michael. All Rights Reserved. 28

 (c) 2011 Haim Michael. All Rights Reserved. 28

Structs
● Using structs we can encapsulate one or more existing types

into a new type, such as a new type that describes a database

record.

● Once we define a new struct type, each variable of that new

struct type will include all fields we specified in our declaration

for that new struct type.

(c) 2011 Haim Michael. All Rights Reserved. 02/04/11

(c) 2011 Haim Michael. All Rights Reserved. 29

 (c) 2011 Haim Michael. All Rights Reserved. 29

Structs

#include <iostream>

namespace infosys
{
 typedef struct
 {
 std::string title;
 std::string author;
 int pages;
 }
 Book;
}

(c) 2011 Haim Michael. All Rights Reserved. 02/04/11

(c) 2011 Haim Michael. All Rights Reserved. 30

 (c) 2011 Haim Michael. All Rights Reserved. 30

Structs

#include <iostream>
#include "book.h"
#include "stdio.h"

using namespace infosys;

int main(int argc, char *argv[])
{
 Book coreScala;
 coreScala.author = "George Benson";
 coreScala.pages = 254;
 coreScala.title = "Core Scala";
 std::cout << coreScala.title << " was written by "

<< coreScala.author << std::endl;
 getchar();
}

(c) 2011 Haim Michael. All Rights Reserved. 02/04/11

(c) 2011 Haim Michael. All Rights Reserved. 31

 (c) 2011 Haim Michael. All Rights Reserved. 31

Structs

(c) 2011 Haim Michael. All Rights Reserved. 02/04/11

(c) 2011 Haim Michael. All Rights Reserved. 32

 (c) 2011 Haim Michael. All Rights Reserved. 32

The if..else Statement
#include <iostream>
#include "stdio.h"

int main(int argc, char *argv[])
{
 int num = 7.2;
 if(num>0)
 {
 std::cout << "positive" << std::endl;
 }
 else
 {
 if(num<0)
 {
 std::cout << "negative" << std::endl;
 }
 else
 {
 std::cout << "zero" << std::endl;
 }
 }
 getchar();
 return 0;
}

(c) 2011 Haim Michael. All Rights Reserved. 02/04/11

(c) 2011 Haim Michael. All Rights Reserved. 33

 (c) 2011 Haim Michael. All Rights Reserved. 33

The Trenary Operator

(condition)?expression1:expression2

The Condition We Want To Check

The Value of The Whole Expression if Condition is True

The Value of The Whole Expression if Condition is False

(c) 2011 Haim Michael. All Rights Reserved. 02/04/11

(c) 2011 Haim Michael. All Rights Reserved. 34

 (c) 2011 Haim Michael. All Rights Reserved. 34

The Trenary Operator

#include <iostream>
#include "book.h"
#include "stdio.h"

int main(int argc, char *argv[])
{
 int num = 7.2;
 std::string msg = (num>0)?"positive":(num<0)?"negative":"zero";
 std::cout << msg;
 getchar();
 return 0;
}

(c) 2011 Haim Michael. All Rights Reserved. 02/04/11

(c) 2011 Haim Michael. All Rights Reserved. 35

 (c) 2011 Haim Michael. All Rights Reserved. 35

The Trenary Operator

The Output

(c) 2011 Haim Michael. All Rights Reserved. 02/04/11

(c) 2011 Haim Michael. All Rights Reserved. 36

 (c) 2011 Haim Michael. All Rights Reserved. 36

The Switch Case Statement

#include <iostream>
#include "book.h"
#include "stdio.h"

int main(int argc, char *argv[])
{
 int num = 2;
 switch(num)
 {
 case 1:
 std::cout << "one" << std::endl;
 break;
 case 2:
 std::cout << "two" << std::endl;
 break;

(c) 2011 Haim Michael. All Rights Reserved. 02/04/11

(c) 2011 Haim Michael. All Rights Reserved. 37

 (c) 2011 Haim Michael. All Rights Reserved. 37

The Switch Case Statement

 case 3:
 std::cout << "three" << std::endl;
 break;
 default:
 std::cout << "other" << std::endl;
 break;
 }
 getchar();
 return 0;
}

(c) 2011 Haim Michael. All Rights Reserved. 02/04/11

(c) 2011 Haim Michael. All Rights Reserved. 38

 (c) 2011 Haim Michael. All Rights Reserved. 38

The Switch Case Statement

The Output

(c) 2011 Haim Michael. All Rights Reserved. 02/04/11

(c) 2011 Haim Michael. All Rights Reserved. 39

 (c) 2011 Haim Michael. All Rights Reserved. 39

Conditional Operators
● The conditional operators purpose is to compare two

expressions. They result in true or false.

● The C++ programming language includes the following

conditional operators: <, <=, >, >=, ==, <, !=, !, &, |, && and

||.

● The && and the || operators are short circuit ones. When using

these operators the evaluation stops when the final result is

certain.

(c) 2011 Haim Michael. All Rights Reserved. 02/04/11

(c) 2011 Haim Michael. All Rights Reserved. 40

 (c) 2011 Haim Michael. All Rights Reserved. 40

The while Loop
#include <iostream>
#include "book.h"
#include "stdio.h"

int main(int argc, char *argv[])
{
 int num=1;
 while(num<=10)
 {
 std::cout<<num<<std::endl;
 num++;
 }
 getchar();
 return 0;
}

(c) 2011 Haim Michael. All Rights Reserved. 02/04/11

(c) 2011 Haim Michael. All Rights Reserved. 41

 (c) 2011 Haim Michael. All Rights Reserved. 41

The do..while Loop
#include <iostream>
#include "book.h"
#include "stdio.h"

int main(int argc, char *argv[])
{
 int num=1;
 do
 {
 std::cout<<num<<std::endl;
 num++;
 }
 while(num<=10);
 getchar();
 return 0;
}

(c) 2011 Haim Michael. All Rights Reserved. 02/04/11

(c) 2011 Haim Michael. All Rights Reserved. 42

 (c) 2011 Haim Michael. All Rights Reserved. 42

The for Loop
#include <iostream>
#include "book.h"
#include "stdio.h"

int main(int argc, char *argv[])
{
 for(int i=1; i<=10; i++)
 {
 std::cout << i << std::endl;
 }
 getchar();
 return 0;
}

(c) 2011 Haim Michael. All Rights Reserved. 02/04/11

(c) 2011 Haim Michael. All Rights Reserved. 43

 (c) 2011 Haim Michael. All Rights Reserved. 43

Arrays
● An array holds a series of values. The values should be of the

same type. We can access each one of the values by its

position in the array.

int vec[10];
vec[0] = 12;
vec[1] = vec[0] + 3;

(c) 2011 Haim Michael. All Rights Reserved. 02/04/11

(c) 2011 Haim Michael. All Rights Reserved. 44

 (c) 2011 Haim Michael. All Rights Reserved. 44

Arrays
● When declaring an array we must specify its size. Once the size

is specified we cannot change it.

● We cannot specify the size to be the value of a variable. It must

be a constant value.

● The first element of the array is always at position 0. The last

element of the array is always at position equals to the size of

the array minus 1.

(c) 2011 Haim Michael. All Rights Reserved. 02/04/11

(c) 2011 Haim Michael. All Rights Reserved. 45

 (c) 2011 Haim Michael. All Rights Reserved. 45

Arrays
#include <iostream>
#include "book.h"
#include "stdio.h"

int main(int argc, char *argv[])
{
 int vec[6];
 vec[0] = 1;
 vec[1] = 1;
 vec[2] = vec[1] + vec[0];
 vec[3] = vec[2] + vec[1];
 vec[4] = vec[3] + vec[2];
 vec[5] = vec[4] + vec[3];
 for(int i=0; i<6; i++)
 {
 std::cout << vec[i] << std::endl;
 }
 getchar();
 return 0;
}

(c) 2011 Haim Michael. All Rights Reserved. 02/04/11

(c) 2011 Haim Michael. All Rights Reserved. 46

 (c) 2011 Haim Michael. All Rights Reserved. 46

Functions
● We usually define functions in order to make the program more

understandable. Decomposing the code into concise functions

eases our way in developing our program and in its

maintenance.

● When the function is been used within the same file where it

was defined there is no need in a header file.

● When the function is been used within other files as well we

should declare it within a header file and place its definition in a

separated source file.

(c) 2011 Haim Michael. All Rights Reserved. 02/04/11

(c) 2011 Haim Michael. All Rights Reserved. 47

 (c) 2011 Haim Michael. All Rights Reserved. 47

Functions
● We usually define functions in order to make the program more

understandable. Decomposing the code into concise functions

eases our way in developing our program and in its

maintenance.

● When the function is been used within the same file where it

was defined there is no need in a header file.

● When the function is been used within other files as well we

should declare it within a header file and place its definition in a

separated source file.

(c) 2011 Haim Michael. All Rights Reserved. 02/04/11

(c) 2011 Haim Michael. All Rights Reserved. 48

 (c) 2011 Haim Michael. All Rights Reserved. 48

Functions

double sum(double a, double b);
double multiply(double a, double b);
double divide(double a, double b);
double difference(double a, double b);

utils.h

(c) 2011 Haim Michael. All Rights Reserved. 02/04/11

(c) 2011 Haim Michael. All Rights Reserved. 49

 (c) 2011 Haim Michael. All Rights Reserved. 49

Functions

double sum(double a, double b)
{
 return a+b;
}

double multiply(double a, double b)
{
 return a*b;
}

double divide(double a, double b)
{
 return a/b;
}

double difference(double a, double b)
{
 return a-b;
}

utils.cpp

(c) 2011 Haim Michael. All Rights Reserved. 02/04/11

(c) 2011 Haim Michael. All Rights Reserved. 50

 (c) 2011 Haim Michael. All Rights Reserved. 50

Functions

#include <iostream>
#include "stdio.h"
#include "utils.h"

int main(int argc, char *argv[])
{
 std::cout << sum(3,5) << std::endl;
 std::cout << multiply(3,5) << std::endl;
 std::cout << divide(3,5) << std::endl;
 std::cout << difference(3,5) << std::endl;
 getchar();
 return 0;
}

main.cpp

(c) 2011 Haim Michael. All Rights Reserved. 02/04/11

(c) 2011 Haim Michael. All Rights Reserved. 51

 (c) 2011 Haim Michael. All Rights Reserved. 51

The Heap and The Stack
● The memory our application uses is composed of two parts.

The heap and the stack.

● The stack works as a collection of cards. Each time there is a

call for executing a function a new card that holds the memory

required for the new execution is added on top of the stack.

● The heap is the area of memory we use when dynamically

allocating new memory.

(c) 2011 Haim Michael. All Rights Reserved. 02/04/11

(c) 2011 Haim Michael. All Rights Reserved. 52

 (c) 2011 Haim Michael. All Rights Reserved. 52

Pointers
● Pointer is a data type that its value (memory address) refers

directly to another value stored in another place in the memory

we work with.

● We can use the new operator for allocating a new memory area

in the heap. The returned value is the address of that area.

(c) 2011 Haim Michael. All Rights Reserved. 02/04/11

(c) 2011 Haim Michael. All Rights Reserved. 53

 (c) 2011 Haim Michael. All Rights Reserved. 53

Pointers

#include <iostream>
#include "stdio.h"
#include "utils.h"
int main(int argc, char *argv[])
{
 int* num = new int;
 *num = 5;
 int* other = num;
 std::cout << *other << std::endl;
 getchar();
}

(c) 2011 Haim Michael. All Rights Reserved. 02/04/11

(c) 2011 Haim Michael. All Rights Reserved. 54

 (c) 2011 Haim Michael. All Rights Reserved. 54

Pointers
● Placing the & operator together with a variable we shall get its

address.

● Placing the * operator together with a variable that holds an

address we shall get the value at that address.

(c) 2011 Haim Michael. All Rights Reserved. 02/04/11

(c) 2011 Haim Michael. All Rights Reserved. 55

 (c) 2011 Haim Michael. All Rights Reserved. 55

Pointers

#include <iostream>
#include "stdio.h"
#include "utils.h"
int main(int argc, char *argv[])
{
 int a = 8;
 int* temp = &a;
 *temp = 9;
 std::cout << a;
 getchar();
}

(c) 2011 Haim Michael. All Rights Reserved. 02/04/11

(c) 2011 Haim Michael. All Rights Reserved. 56

 (c) 2011 Haim Michael. All Rights Reserved. 56

Pointers
● The -> (arrow) operator allows us an easy usage of pointers.

#include <iostream>
#include "stdio.h"
#include "rectangle.h"

int main(int argc, char *argv[])
{
 Rectangle *ob = new Rectangle();
 ob->setWidth(4);
 ob->setHeight(3);
 std::cout << ob->area() << std::endl;
 getchar();
 return 0;
}

(c) 2011 Haim Michael. All Rights Reserved. 02/04/11

(c) 2011 Haim Michael. All Rights Reserved. 57

 (c) 2011 Haim Michael. All Rights Reserved. 57

Pointers

class Rectangle
{
public:
 Rectangle();
 void setWidth(double w);
 void setHeight(double h);
 double area();
private:
 double width;
 double height;
};

(c) 2011 Haim Michael. All Rights Reserved. 02/04/11

(c) 2011 Haim Michael. All Rights Reserved. 58

 (c) 2011 Haim Michael. All Rights Reserved. 58

Pointers
#include "rectangle.h"

Rectangle::Rectangle()
{
}

void Rectangle::setWidth(double w)
{
 if(w>0) width=w;
}

void Rectangle::setHeight(double h)
{
 if(h>0) height=h;
}

double Rectangle::area()
{
 return width*height;
}

(c) 2011 Haim Michael. All Rights Reserved. 02/04/11

(c) 2011 Haim Michael. All Rights Reserved. 59

 (c) 2011 Haim Michael. All Rights Reserved. 59

Pointers

The Output

(c) 2011 Haim Michael. All Rights Reserved. 02/04/11

(c) 2011 Haim Michael. All Rights Reserved. 60

 (c) 2011 Haim Michael. All Rights Reserved. 60

The Heap and The Stack
● The way the stack works the compiler must be able to

determine the exact required memory size during the

compilation.

● For that reason, it is impossible to create an array that its size is

unknown during the compilation time.

...
int size = 10;
int vec[size]; //doesn't compile!
...

(c) 2011 Haim Michael. All Rights Reserved. 02/04/11

(c) 2011 Haim Michael. All Rights Reserved. 61

 (c) 2011 Haim Michael. All Rights Reserved. 61

The Heap and The Stack
● Although some compilers do support that, the C++ spec still

wasn't updated and most compilers don't support it.

● The solution involves with allocating the array dynamically.

...
int* vec;
vec = new int[size];
...

● Once the memory is allocated we can use the array just as any

other array.

(c) 2011 Haim Michael. All Rights Reserved. 02/04/11

(c) 2011 Haim Michael. All Rights Reserved. 62

 (c) 2011 Haim Michael. All Rights Reserved. 62

Strings
● We can represent a string the same way it was done in C. Each

string as an array of characters.
...
char arr[10] = "hello friends";
char* arr = "hello friends";
...

● We can alternatively use the std::string type. This type

wraps the array of characters.
...
std::string str = "hello friends";
...

(c) 2011 Haim Michael. All Rights Reserved. 02/04/11

(c) 2011 Haim Michael. All Rights Reserved. 63

 (c) 2011 Haim Michael. All Rights Reserved. 63

By Reference
● We can use the & operator for specifying parameters we want

to get their values by reference.

#include <iostream>
#include "stdio.h"

void doSomething(int &num)
{
 num++;
}

int main(int argc, char *argv[])
{
 int temp = 5;
 doSomething(temp);
 std::cout << temp;
 getchar();
 return 0;
}

(c) 2011 Haim Michael. All Rights Reserved. 02/04/11

(c) 2011 Haim Michael. All Rights Reserved. 64

 (c) 2011 Haim Michael. All Rights Reserved. 64

Exceptions Handling
● An exception is an unexpected situation. When an exceptional

situation is detected an exception is thrown. Another piece of

code can catch that exception and respond.

● When the throw command is executed the funciton

immediately terminates and nothing is returned.

● If the code where the exception was thrown is surrounded with

try and catch block then the catch segment will get the

exception and handle it.

(c) 2011 Haim Michael. All Rights Reserved. 02/04/11

(c) 2011 Haim Michael. All Rights Reserved. 65

 (c) 2011 Haim Michael. All Rights Reserved. 65

Exceptions Handling

#include <iostream>
#include "stdio.h"

int divide(int a, int b)
{
 if (b==0) throw std::exception();
 return a/b;
}

(c) 2011 Haim Michael. All Rights Reserved. 02/04/11

(c) 2011 Haim Michael. All Rights Reserved. 66

 (c) 2011 Haim Michael. All Rights Reserved. 66

Exceptions Handling

int main(int argc, char *argv[])
{
 try
 {
 int temp = 0;
 temp = divide(44,2);
 std::cout << temp << std::endl;
 temp = divide(5,0);
 std::cout << temp << std::endl;
 }
 catch(std::exception e)
 {
 std::cout << "an exception was caught: " << e.what();
 }
 getchar();
 return 0;
}

(c) 2011 Haim Michael. All Rights Reserved. 02/04/11

(c) 2011 Haim Michael. All Rights Reserved. 67

 (c) 2011 Haim Michael. All Rights Reserved. 67

Exceptions Handling

The Output

(c) 2011 Haim Michael. All Rights Reserved. 02/04/11

(c) 2011 Haim Michael. All Rights Reserved. 68

 (c) 2011 Haim Michael. All Rights Reserved. 68

Constants
● Defining a variable together with the const keyword ensures

that the assigned value cannot be changed.

#include <iostream>
#include "stdio.h"
int main(int argc, char *argv[])
{
 const int num = 5;

//num = 9;
 getchar();
 return 0;
}

(c) 2011 Haim Michael. All Rights Reserved. 02/04/11

(c) 2011 Haim Michael. All Rights Reserved. 69

 (c) 2011 Haim Michael. All Rights Reserved. 69

Constants
● Defining a parameter together with the const keyword ensures

that the passed over value won't chang.

#include <iostream>
#include "stdio.h"
int doSomething(const int* temp)
{
 *temp = 99;
 int total = 2 * *temp;
 return total;
}
int main(int argc, char *argv[])
{
 int num = 5;

...
}

(c) 2011 Haim Michael. All Rights Reserved. 02/04/11

(c) 2011 Haim Michael. All Rights Reserved. 70

 (c) 2011 Haim Michael. All Rights Reserved. 70

Object Oriented Programming
● C++ is an object oriented programming language. We can

define classes and instantiate them.

● The declaration of the class should be within a separated

header file.

● The definition should be within a separated source code cpp file

that its name is identical to the name of the header file.

(c) 2011 Haim Michael. All Rights Reserved. 02/04/11

(c) 2011 Haim Michael. All Rights Reserved. 71

 (c) 2011 Haim Michael. All Rights Reserved. 71

Object Oriented Programming

#include <iostream>

namespace records
{
 class Person
 {
 public:
 Person();
 void info(); //print out information about the person
 void setFirstName(std::string fName);
 std::string getFirstName();
 void setLastName(std::string lName);
 std::string getLastName();
 void setId(int idVal);
 int getId();
 void details();
 private:
 std::string firstName;
 std::string lastName;
 int id;
 };
}

person.h

(c) 2011 Haim Michael. All Rights Reserved. 02/04/11

(c) 2011 Haim Michael. All Rights Reserved. 72

 (c) 2011 Haim Michael. All Rights Reserved. 72

Object Oriented Programming

#include "person.h"
#include <iostream>

using namespace std;

namespace records
{
 Person::Person()
 {
 firstName = "";
 lastName = "";
 id = 0;
 }
 void Person::setFirstName(string fName)
 {
 firstName = fName;
 }
 void Person::setLastName(string lName)
 {
 lastName = lName;
 }

person.cpp

(c) 2011 Haim Michael. All Rights Reserved. 02/04/11

(c) 2011 Haim Michael. All Rights Reserved. 73

 (c) 2011 Haim Michael. All Rights Reserved. 73

Object Oriented Programming

 void Person::setId(int idVal)
 {
 id = idVal;
 }
 string Person::getLastName()
 {
 return lastName;
 }
 string Person::getFirstName()
 {
 return firstName;
 }
 int Person::getId()
 {
 return id;
 }
 void Person::details()
 {
 cout << firstName << " " << lastName << " " << id << std::endl;
 }
}

(c) 2011 Haim Michael. All Rights Reserved. 02/04/11

(c) 2011 Haim Michael. All Rights Reserved. 74

 (c) 2011 Haim Michael. All Rights Reserved. 74

Object Oriented Programming

#include <iostream>
#include "person.h"

using namespace records;

int main(int argc, char *argv[])
{
 int num = 0;
 Person *ob = new Person();
 ob->setFirstName("dave");
 ob->setLastName("bush");
 ob->setId(123123);
 ob->details();
 std::cin >> num;
}

main.cpp

(c) 2011 Haim Michael. All Rights Reserved. 02/04/11

(c) 2011 Haim Michael. All Rights Reserved. 75

 (c) 2011 Haim Michael. All Rights Reserved. 75

Object Oriented Programming

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75

