
© 2008 Haim Michael

Android Threads

© 2008 Haim Michael

Introduction

 The android platform support most of the Java SE classes.

Among the ones it doesn't support we can find the UI ones.

 The android platform supports a different UI model.

 It is important to understand the android UI model in order to

interact with it successfully, especially when dealing with

threads issues.

© 2008 Haim Michael

The UI Thread

 Each application has a thread known as the UI thread. This

thread is also called 'main'.

 The UI thread is in charge of dispatching the various events

to the appropriate widgets.

 The UI thread is responsible for the drawing events and it is

also the one through which the application interacts with the

running components.

© 2008 Haim Michael

The UI Thread

 Having everything executed in a single thread performing

long operations such as network access or database

queries might block the whole user interface. From a user

perspective the application will appear as if it was hung. The

user might even get the 'application not responding'

message.

© 2008 Haim Michael

The UI Thread

 It is highly important to keep the UI thread unblocked. When

having long operations we better do them in a separated

thread.

© 2008 Haim Michael

The Single Thread Rule

 Implementing a separated thread we should ensure that it

doesn't violate the single threaded model.

 The android UI is not thread safe and therefore it must

always be manipulated on the UI thread. Manipulating the

android UI from another thread might cause unexpected

results.

© 2008 Haim Michael

The runOnUiThread(Runnable) Method

 This method was defined as part of the Activity class.

 Using this method we can ensure the run() method will be

executed as part of the UI thread.

public final void runOnUiThread (Runnable action)

If the current thread isn't the UI thread then the run() method will be queued in

order to be performed on the UI thread when called.

© 2008 Haim Michael

The post(Runnable) Method

 This method was defined in View. It can serve us similarly

to the runOnUiThread(Runnable) method. It ensures

that the run() method is executed on the UI thread.

public boolean post(Runnable action)

If the current thread isn't the UI thread then the run() method will be queued in

order to be performed on the UI thread when called.

© 2008 Haim Michael

The post(Runnable) Method

public void onClick(View v)
{

new Thread(new Runnable()
{

 public void run()
{

 final Bitmap img = getImageFromServer();
 imgView.post(new Runnable()

{
 public void run()

{
 imgView.setImageBitmap(img);
 }
 });
 }
 }).start();
}

© 2008 Haim Michael

The postDelayed(Runnable,long) Method

 This method was defined in View. It can serve us similarly

to the runOnUiThread(Runnable) method. It ensures

that the run() method is executed on the UI thread. It sets

a delay of the specified number of milliseconds.

public boolean post(Runnable action, long delay)

If the current thread isn't the UI thread then the run() method will be queued in

order to be performed on the UI thread when called. The call to run() will be

delayed in the specified number of milliseconds.

© 2008 Haim Michael

The AsyncTask Utility Class

public void onClick(View v)
{

new DownloadTask().
execute("http://abelski.com/image.png");

}

 We can alternatively extend this class and override the

required methods.

© 2008 Haim Michael

The AsyncTask Utility Class

private class DownloadTask extends AsyncTask<String, Integer, Bitmap>
{

 protected Bitmap doInBackground(String... url)
 {
 return loadFromNetwork(url);
 }

 protected void onPostExecute(Bitmap result)
 {

 imgView.setImageBitmap(result);
 }
 }

© 2008 Haim Michael

The AsyncTask Utility Class

 When declaring a class that extends AsyncTask we should

specify three types to take the place of the following three

types:
(1) The type of the information that is needed to process the task.

(2) The type of the information that is passed over to indicate about the

 progress.

(3) The type of the information that when the task is completed is passed over to

 the post-task code.

© 2008 Haim Michael

The Handler Class

 Each Handler instance is associated with a single thread

and its message queue.

 Once we get a Handler instance associated with the UI

thread we can deliver Runnable objects to its message

queue and have them executed as if they came out of the

message queue.

© 2008 Haim Michael

The Handler Class

 This class is used mainly for scheduling messages and

Runnable object to be executed as some point in the future

and to en-queue an action to be performed on a different

thread than the one we own.

© 2008 Haim Michael

The Handler Class

Handler()
Default constructor associates this handler with the queue of the current thread.

Handler(Handler.Callback callback)
Constructor associates this handler with the queue of the current thread and
takes a callback interface in which you can handle messages.

Handler(Looper looper)
Use the provided queue instead of the default one.

Handler(Looper looper, Handler.Callback callback)
Use the provided queue instead of the default one and take a callback interface
in which to handle messages.

 This class has various constructors allowing us to get a new

Handler object.

© 2008 Haim Michael

The Handler Class

public final boolean post (Runnable r)

The Runnable will be executed on the thread this Handler object is associated
with.

public final boolean postAtTime (Runnable r,
long uptimeMillis)

The runnable will run on the thread to which this handler is attached. The
runnable will run at a specific time given by uptimeMillis. The time-base is
uptimeMillis().

 Once we get a Handler object we can call various methods

in order to schedule the call for run() method.

© 2008 Haim Michael

Sending Messages to Handler

 Alternatively for passing over runnable objects we can send

messages.

© 2008 Haim Michael

Sending Messages to Handler

 In order to send a message we first need to obtain one. In

order to obtain a message object we should call the

obtainMessage() method on the Handler object we are

working with.
...

Message message = handler.obtainMessage()

...

© 2008 Haim Michael

Sending Messages to Handler

 Sending a message is done by calling the sendMessage()

method.
...

handler.sendMessage(message);

...

© 2008 Haim Michael

Sending Messages to Handler

 In order to process the messages our Handler should

implement the handleMessage() method that will be

called with each message that arrives to the messages

queue the handler handles.

© 2008 Haim Michael

Sending Messages to Handler

 The handleMessage() method is called within the thread

the Handler object is associated with. Assuming it is

associated with the UI thread (also known as the 'main'

thread) the handleMessage() will be called within the UI

thread (the 'main' thraed).

 When instantiating Handler it is by default associate with the

current thread during its instantiation.

© 2008 Haim Michael

Sending Messages to Handler

 The thread that calls the activity onCreate() method is the

main thread, also known as the UI thread.

© 2008 Haim Michael

Sending Messages to Handler

public class HoloActivity extends Activity
{

ProgressBar progressBar;
Handler handler = new Handler()
{

@Override
public void handleMessage(Message message)
{

progressBar.incrementProgressBy(10);
}

};
boolean isRunning = false;
@Override
public void onCreate(Bundle bndl)
{

super.onCreate(bndl);
setContentView(R.layout.main);
progressBar = (ProgressBar) findViewById(R.id.progress);

}

© 2008 Haim Michael

Sending Messages to Handler

public void onStart()
{

super.onStart();
progressBar.setProgress(0);
Thread background = new Thread(new Runnable()
{

public void run()
{

try
{

for (int i = 0; i < 10 && isRunning; i++)
{

Thread.sleep(1000);
handler.sendMessage(handler.obtainMessage());
Log.i("msg","i="+i);

}
}
catch (Throwable t)
{

// end the thread
}

}
});

© 2008 Haim Michael

Sending Messages to Handler

isRunning = true;
background.start();

}

public void onStop()
{

super.onStop();
isRunning = false;

}
}

© 2008 Haim Michael

Sending Messages to Handler

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout

xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical" android:layout_width="fill_parent"
android:layout_height="fill_parent">
<ProgressBar android:id="@+id/progress"

style="?android:attr/progressBarStyleHorizontal"
android:layout_width="fill_parent"
android:layout_height="wrap_content" />

</LinearLayout>

© 2008 Haim Michael

Sending Messages to Handler

© 2008 Haim Michael

Background Threads Caveats

 There is the risk that while the background thread executes

the user will interact with the activity user interface and by

doing so will invalidate the background thread. When

something like that happens we should communicate the

change to the the background thread.

© 2008 Haim Michael

Background Threads Caveats

 When a background thread is executed the possibility that

in the meantime the activity will terminate exists. We

should take that into consideration and pause (or kill) the

background thread within the relevant callback method\s.

© 2008 Haim Michael

Background Threads Caveats

 Background threads might consume resources beyond

expected and cause the user to lose his patience. We

should take that into consideration and ensure we don't

have redundant background threads that damage the user

experience.

© 2008 Haim Michael

Background Threads Caveats

 During the execution of a background thread errors might

occur. We should take that into consideration. In most

cases the proper approach would be informing the user

about the error.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32

