Security Model

© 2008 Haim Michael

Introduction

“* The android OS platform includes a security model that was
developed especially for mobile telephones. It spans

through the entire application life cycle.

© 2008 Haim Michael

Deployment

“* The application (the *.apk file) must be signed with a digital

signature in order to be capable of installing it onto a device.

*» This digital signature ensures that once an application was
installed it will not be possible to upgrade it with a new

version that comes from another developer.

© 2008 Haim Michael

Deployment

“* When trying to upgrade an application with a new version it
must be signed with the same signature that was used for
signing the original version. Otherwise, the android phone

won't allow the upgrade.

** The digital signature doesn't need to be purchased from a
certificate authority, such as Verisign. The certificate is self

signed.

© 2008 Haim Michael

Deployment

“* The eclipse plug-in is capable of taking care after signing
our APK file. It automatically signs it before deploying that

file onto the emulator.

“* The default certificate it uses for the emulator cannot be
used for signing an application in order to deploy it on a real

device.

© 2008 Haim Michael

Deployment

“ The android platform tests whether the signature has

already expired at install time only.

*» When trying to update an application its signature has
already expired the android platform won't allow us to

complete the update.

© 2008 Haim Michael

The keytool Utility

“* We can generate the required keystore for signing our

application by using the keytool utility the JDK includes.

c:\keytool -genkey -keystore c:\myrelease.keystore
—alias aliasname
—storepass XXXXXX
—keypass yyvyvvy
—keyalg RSA

-validity nnnnn

© 2008 Haim Michael

The keytool Utility

keytool

This is the name of the utility we want to use. This utility is located within the 'bin

folder of our JDK.

—getkey

This tells the keytool utility that we want to generate a key.

-keystore c:\filename.keystore

This tells the name of the file in which we want the key to be stored.

© 2008 Haim Michael

The keytool Utility

—alias aliasname

This is the name of the keystore entry. This is the alias we will be able to use in

order to access the key we create.

—storepass XXXXXX

This is the password that will be used to access the keystore.

~keypass yyyyyy
This is the password used to access the private key.

© 2008 Haim Michael

The keytool Utility

—keyalg RSA

This is the algorithm to be used when generating the key.
-validity nnnnn

This is the validity period. Specified in days. It should be long enough to support

the entire lifespan of the application (including its updates).

© 2008 Haim Michael

The keytool Utility

“* When executing this command we will be asked for various
questions, which are part of the process of generating a
keystore. Once completed, we shall get a digital certificate
we can now use in conjunction with the jarsigner utility in

order to sign our application.

% The jarsigner utility will use the digital certificate the

keystore file holds.

© 2008 Haim Michael

The jarsigner Utility

c:\Jarsigner

-keystore c:\mykeys.keystore

—-storepass XXXXXX

-keypass yyyyvy

myapp.apk aliasname

© 2008 Haim Michael

The jarsigner Utility

jarsigner

This is the name of the utility we use in order to sign an apk file.

-keystore c:\mykeys.keystore
We should specify the name of the keystore file we want to use. The one that

includes the key.

—storepass XXXXXX
We should specify the password required to access the keystore we want to

use.

© 2008 Haim Michael

The jarsigner Utility

~keypass yyyyyy
We should specify the password of the alias we specified when creating the

keystore now being used.
myapp.apk aliasname

We should specify the name of the apk file we want to sign following with the

alias name been used when creating the digital certificate we are now using.

© 2008 Haim Michael

Deployment using The Eclipse

“* Working with the Eclipse we can use the 'Export Android
Application' that uses the keytool and the jarsigner
utilities in order to sign our application. We can avoid using

the keytool and the jarsigner from the command line.

© 2008 Haim Michael

Deployment using The Eclipse

File Edit Run Source Refactor Mavigate Search Project Window Help

i %5 Debug |&J Java 7

11l sSelect ﬂ S O|[Br® =0
OEN 124 - -
a1 FrameByFrameAnimation |j> - %_: -
1 OpenGLProject A
L1 PromptDislagProject |Se|ect ‘.an export destination: | | % |9
B SimpleCpenGlLProject type filter text 3 -
[arc A oAl
Gc? gen [Generated Java Files] al E"D Uncateq:
‘B Android 1.5 b
=]
= assets
O- =
2 res o= 0 N]
€1 AndroidManifest. xml =
default. properties laz B\ ‘&s ®
Ho(= Java .
£-(= Plug-in Development w
£-[= Run/Debug %
2 T SRRy
&5 @. ¥
(= WML B an F)
[l @ =8

4@

Android

Gl #E-r5-—0

u) SimplepenGLProject

© 2008 Haim Michael

Separated Processes

*» Each application for the android platform is executed within
a separated process. Each process has a unique and a

permanent ID assigned when the application is installed.

“* This separation prevents each application from accessing

other applications directly.

© 2008 Haim Michael

Separated Processes

“+ Applications can still share information with each other by
using predefined mechanisms such as content providers,
services and starting new activities from within the running

one.

© 2008 Haim Michael

Declarative Permission Model

“* The android platform implements a declarative permission
model that protects sensitive features, such as the contacts
list, the ability to send and receive SMS, the ability to make

a phone call etc.

*» In order to use any of these features and resources we must
add the required (one or more) permissions to the

AndroidManifest.xml file.

© 2008 Haim Michael

Declarative Permission Model

“* When installing an application the android platform either
grants or denies the requested permissions based on the
signature of the .apk file and/or the user's settings and
feedback.

*» Each permission is defined as a final static integer variable
within the android.Manifest.permission final static

Inner class.

© 2008 Haim Michael

file:///D:/india_pack/android_slides/android/

Declarative Permission Model

Java - SimpleOpenGLProject/AndroidManifest.xml - Eclipse

File Edit Run Mavigate Search Project Refactor

Window Help
I : | : : : = 7 : -
(- H :Q:15*:%'0'%':@5?@':9[59-":: o <o B %5 Debug »
[% Parkage Explarer 2 'Eg Hierarchy | = O || [J] SimpleOpenGLactivity java [J] OpenGLRendsrer java €l *SimpleOpenGLProject Manifest 23 =0 @ TE =0
& = . . L =
0S| e a Android Manifest Permissions
FrameByFrameAnimati - -
g Or:;eGLirro?:cT: nimaten Permissions @ @ @ ® Az Attributes for Uses Permission = %'
127 PromptDialogProjeck @ Er— w T:e uies—germission taEarequests‘;a "permLssion" B & A
L. : S8 PErmISSIon thak the containing package must be granted in
= SénpleOpenGLPro]ect order For it to operate correctly, I:I r oAl
+ Src
% gen [Generated Java Files] Mame | | v | EE Uncateqc
B Android 1.5 android. permission, ACCESS_MOCK_LOCATION ~
Glbc_b " 0 WE ATE =
o e andraid. permission. ACCESS_SURFACE_FLINGER Bz e = H
= res Andrnid nermiccinn ACCFSS WIFT STATE 28| o=
€1 AndroidManifest, xml < | > ~ I
default, properties o et B ek
available.
Manifest | Application | Permissions | Instrumentation | AndroidiManifest, xml
@ Javadac P2 |<§>|Qj ;=0
[problems | B consdle 32 E Properties | 4" Search Ewpgl| et B~-5~-=0
Android
: OF
’
+5 Start

© 2008 Haim Michael

Declarative Permission Model

Manifest. permission | Android Developers

|_ 4 | » || + | C]http:fideveloper.android. comjreference/ android Manifest. permission. hitrrl ¢ | Q- Google | O~ %~

[Apple ¥ahoo! Google Maps YouTube ‘Wikipedia Mews (293) ¥ Popular v

@ |Englisk % Android.com
CN2>3012

Home SDK Dev Guide - | Resources Videos Blog CFiter by AF1Lever |:|

L

A . .))
FPackade Index | Class Index — puhhc static final class Summary: Constants | Ctors | Inherited Methods | [Expand All]

|| Manifest.permission Since: APl Levelt
android.accessibilityservice

android. accounts extends Object

android.app
android.appwidget
android.bluetoath
andraid.cantent
android.content prm
android.contentres

java.lang. Object
Landroid.Manifest. permission

< | > ummary
~
Classes il Constants
Manifest . . N - . .
= — String ACCESS_CHECKIMN_FPROPERTIES Allows readiwrite access to the "properies” table in the checkin
Manifest.permission

database, to change values that get uploaded.
Manifest.permission_groug ! g .

R _ String ACCESS_COARSE_LOCATION Allowes an application to access coarse (e.g., Cell-1D, WiFi) location
E::?rlamy String ACCESS_FIME_LOCATION Allowes an application to access fine (8.g., GPE) lacation

E:Egrol String | AGCESS_LOCATION_EXTRA_COMMANDS Allows an application to access extra location provider commands
E:Eliurlr?;n String ACCESS_MOCK_LOCATION Allowes an application to create mock location providers for testing
R.drawrable String | ACCESS_NETWORK_STATE Allows applications to access information about networks
E::gteger String AGCESS_SURFACE_FLINGER Allows an application to use SurfaceFlinger's low level features
E:lpaﬁjlur:rs String ACCESS_WIFI_STATE Allowes applications to access information about Wi-Fi networks
Fraw L/ String | ACCOUNT_MANAGER Allows applications to call inta Accountduthenticators.

<

_Llse Tree Mavigation

© 2008 Haim Michael

© 2008 Haim Michael 04/07/10

Security Model

04/07/10 © 2008 Haim Michael 1

© 2008 Haim Michael 1

© 2008 Haim Michael

Introduction

% The android OS platform includes a security model that was
developed especially for mobile telephones. It spans

through the entire application life cycle.

04/07/10 © 2008 Haim Michael

© 2008 Haim Michael

04/07/10

© 2008 Haim Michael

Deployment

% The application (the *.apk file) must be signed with a digital

signature in order to be capable of installing it onto a device.

 This digital signature ensures that once an application was
installed it will not be possible to upgrade it with a new

version that comes from another developer.

04/07/10 © 2008 Haim Michael

© 2008 Haim Michael

04/07/10

© 2008 Haim Michael

Deployment

% When trying to upgrade an application with a new version it
must be signed with the same signature that was used for
signing the original version. Otherwise, the android phone

won't allow the upgrade.

% The digital signature doesn't need to be purchased from a
certificate authority, such as Verisign. The certificate is self

signed.

04/07/10 © 2008 Haim Michael

© 2008 Haim Michael

04/07/10

© 2008 Haim Michael 04/07/10

Deployment

% The eclipse plug-in is capable of taking care after signing
our APK file. It automatically signs it before deploying that

file onto the emulator.

+» The default certificate it uses for the emulator cannot be

used for signing an application in order to deploy it on a real

device.

04/07/10 © 2008 Haim Michael 5

© 2008 Haim Michael 5

© 2008 Haim Michael

Deployment

% The android platform tests whether the signature has

already expired at install time only.

“ When trying to update an application its signature has
already expired the android platform won't allow us to

complete the update.

04/07/10 © 2008 Haim Michael

© 2008 Haim Michael

04/07/10

© 2008 Haim Michael

The keytool Utility

% We can generate the required keystore for signing our

application by using the keytool utility the JDK includes.

c:\keytool -genkey -keystore c:\myrelease.keystore
-alias aliasname
—-storepass XXXXXX
-keypass yyyyyy
-keyalg RSA

-validity nnnnn

04/07/10 © 2008 Haim Michael

© 2008 Haim Michael

04/07/10

© 2008 Haim Michael 04/07/10

The keytool Ultility

keytool

This is the name of the utility we want to use. This utility is located within the 'bin
folder of our JDK.

-getkey
This tells the keytool utility that we want to generate a key.

-keystore c:\filename.keystore

This tells the name of the file in which we want the key to be stored.

04/07/10 © 2008 Haim Michael 8

© 2008 Haim Michael 8

© 2008 Haim Michael
The keytool Ultility
-alias aliasname
This is the name of the keystore entry. This is the alias we will be able to use in
order to access the key we create.
-storepass XXXXXX
This is the password that will be used to access the keystore.
-keypass yyyyyy
This is the password used to access the private key.
04/07/10 © 2008 Haim Michael

© 2008 Haim Michael

04/07/10

© 2008 Haim Michael

The keytool Ultility

-keyalg RSA

This is the algorithm to be used when generating the key.

-validity nnnnn
This is the validity period. Specified in days. It should be long enough to support

the entire lifespan of the application (including its updates).

04/07/10 © 2008 Haim Michael

© 2008 Haim Michael

04/07/10

10

© 2008 Haim Michael

The keytool Ultility

% When executing this command we will be asked for various
questions, which are part of the process of generating a
keystore. Once completed, we shall get a digital certificate
we can now use in conjunction with the jarsigner utility in

order to sign our application.

% The jarsigner utility will use the digital certificate the

keystore file holds.

04/07/10 © 2008 Haim Michael 11

© 2008 Haim Michael

04/07/10

11

© 2008 Haim Michael 04/07/10

The jarsigner Ultility

c:\Jarsigner -keystore c:\mykeys.keystore
-storepass XXXXXX

~keypass yyyyyy
myapp.apk aliasname

04/07/10 © 2008 Haim Michael 12

© 2008 Haim Michael 12

© 2008 Haim Michael

© 2008 Haim Michael

The jarsigner Ultility
jarsigner
This is the name of the utility we use in order to sign an apk file.
-keystore c:\mykeys.keystore
We should specify the name of the keystore file we want to use. The one that
includes the key.
-storepass XXXXXX
We should specify the password required to access the keystore we want to
use.
04/07/10 © 2008 Haim Michael

04/07/10

13

© 2008 Haim Michael

The jarsigner Utility

~keypass yyyyyy
We should specify the password of the alias we specified when creating the

keystore now being used.

myapp.apk aliasname
We should specify the name of the apk file we want to sign following with the
alias name been used when creating the digital certificate we are now using.

04/07/10 © 2008 Haim Michael

© 2008 Haim Michael

04/07/10

14

© 2008 Haim Michael

Deployment using The Eclipse

“» Working with the Eclipse we can use the 'Export Android
Application' that uses the keytool and the jarsigner
utilities in order to sign our application. We can avoid using

the keytool and the jarsigner from the command line.

04/07/10 © 2008 Haim Michael

© 2008 Haim Michael

04/07/10

15

© 2008 Haim Michael 04/07/10

Deployment using The Eclipse

. Java - SimpleOpenGLProject/stcicom/abelskilsamples/OpenGLRenderer.java - Eclipse a
feici e se s o (IR T - - o e
N = A &
1 FrameByFramednimation
B Opentilprject Select an expor destinain
o p—
=2 sinleOpendlProjct e it]
& e | [F& s
@83 gon Gonerated Jva Fies] & asies = 5 uncates
= Andrad 1. T e g
':‘@ assets 4] File System %ox . = O]
@8 res T prefersnces =k
@ tndodantest i i -
2] defout properes o PR
G ava K
& PhgnDeveopment X
& & Runfoebug
W Tasks -
e3eap
& Team »
e 3
e T -
[5 Lafpl B
i

16

© 2008 Haim Michael

04/07/10

© 2008 Haim Michael

© 2008 Haim Michael

Separated Processes

++ Each application for the android platform is executed within
a separated process. Each process has a unique and a

permanent ID assigned when the application is installed.

% This separation prevents each application from accessing

other applications directly.

04/07/10 © 2008 Haim Michael

© 2008 Haim Michael

04/07/10

17

© 2008 Haim Michael

Separated Processes

% Applications can still share information with each other by
using predefined mechanisms such as content providers,
services and starting new activities from within the running

one.

04/07/10 © 2008 Haim Michael

© 2008 Haim Michael

04/07/10

18

© 2008 Haim Michael 04/07/10

Declarative Permission Model

¢ The android platform implements a declarative permission
model that protects sensitive features, such as the contacts
list, the ability to send and receive SMS, the ability to make

a phone call etc.

% In order to use any of these features and resources we must
add the required (one or more) permissions to the

AndroidManifest.xml file.

04/07/10 © 2008 Haim Michael 19

© 2008 Haim Michael 19

© 2008 Haim Michael

Declarative Permission Model

“ When installing an application the android platform either
grants or denies the requested permissions based on the
signature of the .apk file and/or the user's settings and
feedback.

% Each permission is defined as a final static integer variable
within the android.Manifest.permission final static

inner class.

04/07/10 © 2008 Haim Michael 20

You can find a detailed list of the available permissions at
http://developer.android.com/reference/android/Manifest.permission.html

© 2008 Haim Michael

04/07/10

20

© 2008 Haim Michael

04/07/10

© 2008 Haim Michael

Declarative Permission Model

pleOpenGLProject /AndroidManifest. xml - Eclipse

o Help

Fle Edt Run Novigate Search Project Refactor
ci-E B BEd -0 BHEG SSF-Y ACRCRd ¥ ¥ vebug >
vy java | (1) a Manifest £ = O0|@r= =0

£ Package Explorer 27 2 Hierarchy| = 0[]
E % & 7| @ Android Manifest Permissions

L FrameByFramednimation,
e ke oG Prmison
I penGLProject POR®
1 PromptDislogProject) () The uses-permission tsq requests & “permission”
) Uses Permission that the containing package must be granted in
S smopraroe: e ey i Jra
35 g ot s 71 Chtmator]
=i o 15
Janchoid. permision ACCESS_SLRFACE FUNGER [0z 005 =)
lrrid nermissinn ACCFSS WIFT STATF ==

& res
Q0 AndroidManifest, il

default properties A outine s not

avalable.
ManiFest Application | Permissions | Instrumentation Androidhanifest.xm|
@ Javadoc 3 |Gl @ =8
[£: problems | B console 92 properties| 4 Search Eupl #B-r8-=8
ancraid

=S

© 2008 Haim Michael

21

04/07/10

21

© 2008 Haim Michael

© 2008 Haim Michael

04/07/10

Declarative Permission Model

© Manifest. permission || Android Developers

(o> (£

ncfoid permission.html &] [Q- coogle | DO %~
M Apple wshoo! GoogleMps VouTube Wikipedia News (293) v Popular v
"] __Enghsh ¥ Android.com
na301
. N Fiter by APl Level
Home SDK Dev Guide | | Resources Videos Blog Qrneroy E&]

Paskae Index | Class lntex &)

android
androig accessibiltysenice
andrid accounts
android.app
android.appriidget
androig bluetooth
android content
android.content pm
android.content res:

] i)

Classes.
Manife st
Manifest per mission
Manifs st permission_orouy
R

Ranim

Rdrawable
Rid =
Rintsger
Rlayout
Roplurals
raw

public static final class
Manifest.permission
extends Object

java lan. Obiect
Landroid Manifest permission

Summary
Constants
Sting | ACCESS_CHECKIN_PROPERTIES
String ACCESS_COARSE_LOCATION
Siring | ACCESS_FINE_LOGATION
Stting | ACCESS_LOGATION_EXTRA_COMMANDS
String ACCESS_MOCK_LOCATION
Sting | ACCESS_METWORK_STATE
String ACCESS_SURFACE_FLINGER
String ACCESS_WIFI_STATE
Sting | ACCOUNT_MANAGER

Summan: Constants | Ctors | Inherited Mathods | [Expand All
since: APl Level 1

Allows readinite access to the “properties” table in the checkin
databass, to change values that gst uploaded

Allows an application to access coarse (2.0., CellD, WIF) lacation
Allows an application to access fine (e.g., GPS) location

Allows an applicaion to access exira location provider cormmands
Allows an applicatian to create mock Ication providers for testing
Allows applications to access information about networks

Allows an application to use SurfaceFlinger's low level features
Allows applications to access inforrnation aboutWi-Fi networks

Allows applications to cal into AccauntAuthenticators

© 2008 Haim Michael

22

04/07/10

22

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

