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Introduction

“* The android OS platform includes a security model that was
developed especially for mobile telephones. It spans

through the entire application life cycle.
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Deployment

“* The application (the *.apk file) must be signed with a digital

signature in order to be capable of installing it onto a device.

*» This digital signature ensures that once an application was
installed it will not be possible to upgrade it with a new

version that comes from another developer.
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Deployment

“* When trying to upgrade an application with a new version it
must be signed with the same signature that was used for
signing the original version. Otherwise, the android phone

won't allow the upgrade.

** The digital signature doesn't need to be purchased from a
certificate authority, such as Verisign. The certificate is self

signed.
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Deployment

“* The eclipse plug-in is capable of taking care after signing
our APK file. It automatically signs it before deploying that

file onto the emulator.

“* The default certificate it uses for the emulator cannot be
used for signing an application in order to deploy it on a real

device.
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Deployment

“ The android platform tests whether the signature has

already expired at install time only.

*» When trying to update an application its signature has
already expired the android platform won't allow us to

complete the update.
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The keytool Utility

“* We can generate the required keystore for signing our

application by using the keytool utility the JDK includes.

c:\keytool -genkey -keystore c:\myrelease.keystore
—alias aliasname
—storepass XXXXXX
—keypass yyvyvvy
—keyalg RSA

-validity nnnnn
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The keytool Utility

keytool

This is the name of the utility we want to use. This utility is located within the 'bin

folder of our JDK.

—getkey

This tells the keytool utility that we want to generate a key.

-keystore c:\filename.keystore

This tells the name of the file in which we want the key to be stored.
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The keytool Utility

—alias aliasname

This is the name of the keystore entry. This is the alias we will be able to use in

order to access the key we create.

—storepass XXXXXX

This is the password that will be used to access the keystore.

~keypass yyyyyy
This is the password used to access the private key.
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The keytool Utility

—keyalg RSA

This is the algorithm to be used when generating the key.
-validity nnnnn

This is the validity period. Specified in days. It should be long enough to support

the entire lifespan of the application (including its updates).
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The keytool Utility

“* When executing this command we will be asked for various
questions, which are part of the process of generating a
keystore. Once completed, we shall get a digital certificate
we can now use in conjunction with the jarsigner utility in

order to sign our application.

% The jarsigner utility will use the digital certificate the

keystore file holds.
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The jarsigner Utility

c:\Jarsigner

-keystore c:\mykeys.keystore

—-storepass XXXXXX

-keypass yyyyvy

myapp.apk aliasname
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The jarsigner Utility

jarsigner

This is the name of the utility we use in order to sign an apk file.

-keystore c:\mykeys.keystore
We should specify the name of the keystore file we want to use. The one that

includes the key.

—storepass XXXXXX
We should specify the password required to access the keystore we want to

use.
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The jarsigner Utility

~keypass yyyyyy
We should specify the password of the alias we specified when creating the

keystore now being used.
myapp.apk aliasname

We should specify the name of the apk file we want to sign following with the

alias name been used when creating the digital certificate we are now using.
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Deployment using The Eclipse

“* Working with the Eclipse we can use the 'Export Android
Application' that uses the keytool and the jarsigner
utilities in order to sign our application. We can avoid using

the keytool and the jarsigner from the command line.
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Deployment using The Eclipse
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Separated Processes

*» Each application for the android platform is executed within
a separated process. Each process has a unique and a

permanent ID assigned when the application is installed.

“* This separation prevents each application from accessing

other applications directly.
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Separated Processes

“+ Applications can still share information with each other by
using predefined mechanisms such as content providers,
services and starting new activities from within the running

one.
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Declarative Permission Model

“* The android platform implements a declarative permission
model that protects sensitive features, such as the contacts
list, the ability to send and receive SMS, the ability to make

a phone call etc.

*» In order to use any of these features and resources we must
add the required (one or more) permissions to the

AndroidManifest.xml file.
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Declarative Permission Model

“* When installing an application the android platform either
grants or denies the requested permissions based on the
signature of the .apk file and/or the user's settings and
feedback.

*» Each permission is defined as a final static integer variable
within the android.Manifest.permission final static

Inner class.
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Declarative Permission Model
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Introduction

% The android OS platform includes a security model that was
developed especially for mobile telephones. It spans

through the entire application life cycle.
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Deployment

% The application (the *.apk file) must be signed with a digital

signature in order to be capable of installing it onto a device.

 This digital signature ensures that once an application was
installed it will not be possible to upgrade it with a new

version that comes from another developer.
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Deployment

% When trying to upgrade an application with a new version it
must be signed with the same signature that was used for
signing the original version. Otherwise, the android phone

won't allow the upgrade.

% The digital signature doesn't need to be purchased from a
certificate authority, such as Verisign. The certificate is self

signed.
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Deployment

% The eclipse plug-in is capable of taking care after signing
our APK file. It automatically signs it before deploying that

file onto the emulator.

+» The default certificate it uses for the emulator cannot be

used for signing an application in order to deploy it on a real

device.
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Deployment

% The android platform tests whether the signature has

already expired at install time only.

“ When trying to update an application its signature has
already expired the android platform won't allow us to

complete the update.
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The keytool Utility

% We can generate the required keystore for signing our

application by using the keytool utility the JDK includes.

c:\keytool -genkey -keystore c:\myrelease.keystore
-alias aliasname
—-storepass XXXXXX
-keypass yyyyyy
-keyalg RSA

-validity nnnnn
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The keytool Ultility

keytool

This is the name of the utility we want to use. This utility is located within the 'bin
folder of our JDK.

-getkey
This tells the keytool utility that we want to generate a key.

-keystore c:\filename.keystore

This tells the name of the file in which we want the key to be stored.
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The keytool Ultility
-alias aliasname
This is the name of the keystore entry. This is the alias we will be able to use in
order to access the key we create.
-storepass XXXXXX
This is the password that will be used to access the keystore.
-keypass yyyyyy
This is the password used to access the private key.
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The keytool Ultility

-keyalg RSA

This is the algorithm to be used when generating the key.

-validity nnnnn
This is the validity period. Specified in days. It should be long enough to support

the entire lifespan of the application (including its updates).
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The keytool Ultility

% When executing this command we will be asked for various
questions, which are part of the process of generating a
keystore. Once completed, we shall get a digital certificate
we can now use in conjunction with the jarsigner utility in

order to sign our application.

% The jarsigner utility will use the digital certificate the

keystore file holds.
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The jarsigner Ultility

c:\Jarsigner -keystore c:\mykeys.keystore
-storepass XXXXXX

~keypass yyyyyy
myapp.apk aliasname
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The jarsigner Ultility
jarsigner
This is the name of the utility we use in order to sign an apk file.
-keystore c:\mykeys.keystore
We should specify the name of the keystore file we want to use. The one that
includes the key.
-storepass XXXXXX
We should specify the password required to access the keystore we want to
use.
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The jarsigner Utility

~keypass yyyyyy
We should specify the password of the alias we specified when creating the

keystore now being used.

myapp.apk aliasname
We should specify the name of the apk file we want to sign following with the
alias name been used when creating the digital certificate we are now using.
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Deployment using The Eclipse

“» Working with the Eclipse we can use the 'Export Android
Application' that uses the keytool and the jarsigner
utilities in order to sign our application. We can avoid using

the keytool and the jarsigner from the command line.
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Deployment using The Eclipse
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Separated Processes

++ Each application for the android platform is executed within
a separated process. Each process has a unique and a

permanent ID assigned when the application is installed.

% This separation prevents each application from accessing

other applications directly.
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Separated Processes

% Applications can still share information with each other by
using predefined mechanisms such as content providers,
services and starting new activities from within the running

one.
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Declarative Permission Model

¢ The android platform implements a declarative permission
model that protects sensitive features, such as the contacts
list, the ability to send and receive SMS, the ability to make

a phone call etc.

% In order to use any of these features and resources we must
add the required (one or more) permissions to the

AndroidManifest.xml file.
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Declarative Permission Model

“ When installing an application the android platform either
grants or denies the requested permissions based on the
signature of the .apk file and/or the user's settings and
feedback.

% Each permission is defined as a final static integer variable
within the android.Manifest.permission final static

inner class.
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You can find a detailed list of the available permissions at
http://developer.android.com/reference/android/Manifest.permission.html
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Declarative Permission Model
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Declarative Permission Model
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