
© 2008 Haim Michael

Security Model

© 2008 Haim Michael

Introduction

 The android OS platform includes a security model that was

developed especially for mobile telephones. It spans

through the entire application life cycle.

© 2008 Haim Michael

Deployment

 The application (the *.apk file) must be signed with a digital

signature in order to be capable of installing it onto a device.

 This digital signature ensures that once an application was

installed it will not be possible to upgrade it with a new

version that comes from another developer.

© 2008 Haim Michael

Deployment

 When trying to upgrade an application with a new version it

must be signed with the same signature that was used for

signing the original version. Otherwise, the android phone

won't allow the upgrade.

 The digital signature doesn't need to be purchased from a

certificate authority, such as Verisign. The certificate is self

signed.

© 2008 Haim Michael

Deployment

 The eclipse plug-in is capable of taking care after signing

our APK file. It automatically signs it before deploying that

file onto the emulator.

 The default certificate it uses for the emulator cannot be

used for signing an application in order to deploy it on a real

device.

© 2008 Haim Michael

Deployment

 The android platform tests whether the signature has

already expired at install time only.

 When trying to update an application its signature has

already expired the android platform won't allow us to

complete the update.

© 2008 Haim Michael

The keytool Utility

 We can generate the required keystore for signing our

application by using the keytool utility the JDK includes.

c:\keytool -genkey -keystore c:\myrelease.keystore
 -alias aliasname

-storepass xxxxxx
-keypass yyyyyy
-keyalg RSA
-validity nnnnn

© 2008 Haim Michael

keytool
This is the name of the utility we want to use. This utility is located within the 'bin'

folder of our JDK.

-getkey
This tells the keytool utility that we want to generate a key.

-keystore c:\filename.keystore
This tells the name of the file in which we want the key to be stored.

The keytool Utility

© 2008 Haim Michael

-alias aliasname
This is the name of the keystore entry. This is the alias we will be able to use in

order to access the key we create.

-storepass xxxxxx
This is the password that will be used to access the keystore.

-keypass yyyyyy
This is the password used to access the private key.

The keytool Utility

© 2008 Haim Michael

-keyalg RSA
This is the algorithm to be used when generating the key.

-validity nnnnn
This is the validity period. Specified in days. It should be long enough to support

the entire lifespan of the application (including its updates).

The keytool Utility

© 2008 Haim Michael

 When executing this command we will be asked for various

questions, which are part of the process of generating a

keystore. Once completed, we shall get a digital certificate

we can now use in conjunction with the jarsigner utility in

order to sign our application.

 The jarsigner utility will use the digital certificate the

keystore file holds.

The keytool Utility

© 2008 Haim Michael

c:\jarsigner -keystore c:\mykeys.keystore
 -storepass xxxxxx
 -keypass yyyyyy
 myapp.apk aliasname

The jarsigner Utility

© 2008 Haim Michael

jarsigner
This is the name of the utility we use in order to sign an apk file.

-keystore c:\mykeys.keystore
We should specify the name of the keystore file we want to use. The one that

includes the key.

-storepass xxxxxx
We should specify the password required to access the keystore we want to

use.

The jarsigner Utility

© 2008 Haim Michael

-keypass yyyyyy
We should specify the password of the alias we specified when creating the

keystore now being used.

myapp.apk aliasname
We should specify the name of the apk file we want to sign following with the

alias name been used when creating the digital certificate we are now using.

The jarsigner Utility

© 2008 Haim Michael

Deployment using The Eclipse

 Working with the Eclipse we can use the 'Export Android

Application' that uses the keytool and the jarsigner

utilities in order to sign our application. We can avoid using

the keytool and the jarsigner from the command line.

© 2008 Haim Michael

Deployment using The Eclipse

© 2008 Haim Michael

Separated Processes

 Each application for the android platform is executed within

a separated process. Each process has a unique and a

permanent ID assigned when the application is installed.

 This separation prevents each application from accessing

other applications directly.

© 2008 Haim Michael

Separated Processes

 Applications can still share information with each other by

using predefined mechanisms such as content providers,

services and starting new activities from within the running

one.

© 2008 Haim Michael

Declarative Permission Model

 The android platform implements a declarative permission

model that protects sensitive features, such as the contacts

list, the ability to send and receive SMS, the ability to make

a phone call etc.

 In order to use any of these features and resources we must

add the required (one or more) permissions to the

AndroidManifest.xml file.

© 2008 Haim Michael

Declarative Permission Model

 When installing an application the android platform either

grants or denies the requested permissions based on the

signature of the .apk file and/or the user's settings and

feedback.

 Each permission is defined as a final static integer variable

within the android.Manifest.permission final static

inner class.

file:///D:/india_pack/android_slides/android/

© 2008 Haim Michael

Declarative Permission Model

© 2008 Haim Michael

Declarative Permission Model

© 2008 Haim Michael 04/07/10

© 2008 Haim Michael 1

04/07/10 © 2008 Haim Michael 1

Security Model

© 2008 Haim Michael 04/07/10

© 2008 Haim Michael 2

04/07/10 © 2008 Haim Michael 2

Introduction

 The android OS platform includes a security model that was

developed especially for mobile telephones. It spans

through the entire application life cycle.

© 2008 Haim Michael 04/07/10

© 2008 Haim Michael 3

04/07/10 © 2008 Haim Michael 3

Deployment

 The application (the *.apk file) must be signed with a digital

signature in order to be capable of installing it onto a device.

 This digital signature ensures that once an application was

installed it will not be possible to upgrade it with a new

version that comes from another developer.

© 2008 Haim Michael 04/07/10

© 2008 Haim Michael 4

04/07/10 © 2008 Haim Michael 4

Deployment

 When trying to upgrade an application with a new version it

must be signed with the same signature that was used for

signing the original version. Otherwise, the android phone

won't allow the upgrade.

 The digital signature doesn't need to be purchased from a

certificate authority, such as Verisign. The certificate is self

signed.

© 2008 Haim Michael 04/07/10

© 2008 Haim Michael 5

04/07/10 © 2008 Haim Michael 5

Deployment

 The eclipse plug-in is capable of taking care after signing

our APK file. It automatically signs it before deploying that

file onto the emulator.

 The default certificate it uses for the emulator cannot be

used for signing an application in order to deploy it on a real

device.

© 2008 Haim Michael 04/07/10

© 2008 Haim Michael 6

04/07/10 © 2008 Haim Michael 6

Deployment

 The android platform tests whether the signature has

already expired at install time only.

 When trying to update an application its signature has

already expired the android platform won't allow us to

complete the update.

© 2008 Haim Michael 04/07/10

© 2008 Haim Michael 7

04/07/10 © 2008 Haim Michael 7

The keytool Utility

 We can generate the required keystore for signing our

application by using the keytool utility the JDK includes.

c:\keytool -genkey -keystore c:\myrelease.keystore
 -alias aliasname

-storepass xxxxxx
-keypass yyyyyy
-keyalg RSA
-validity nnnnn

© 2008 Haim Michael 04/07/10

© 2008 Haim Michael 8

04/07/10 © 2008 Haim Michael 8

keytool
This is the name of the utility we want to use. This utility is located within the 'bin'

folder of our JDK.

-getkey
This tells the keytool utility that we want to generate a key.

-keystore c:\filename.keystore
This tells the name of the file in which we want the key to be stored.

The keytool Utility

© 2008 Haim Michael 04/07/10

© 2008 Haim Michael 9

04/07/10 © 2008 Haim Michael 9

-alias aliasname
This is the name of the keystore entry. This is the alias we will be able to use in

order to access the key we create.

-storepass xxxxxx
This is the password that will be used to access the keystore.

-keypass yyyyyy
This is the password used to access the private key.

The keytool Utility

© 2008 Haim Michael 04/07/10

© 2008 Haim Michael 10

04/07/10 © 2008 Haim Michael 10

-keyalg RSA
This is the algorithm to be used when generating the key.

-validity nnnnn
This is the validity period. Specified in days. It should be long enough to support

the entire lifespan of the application (including its updates).

The keytool Utility

© 2008 Haim Michael 04/07/10

© 2008 Haim Michael 11

04/07/10 © 2008 Haim Michael 11

 When executing this command we will be asked for various

questions, which are part of the process of generating a

keystore. Once completed, we shall get a digital certificate

we can now use in conjunction with the jarsigner utility in

order to sign our application.

 The jarsigner utility will use the digital certificate the

keystore file holds.

The keytool Utility

© 2008 Haim Michael 04/07/10

© 2008 Haim Michael 12

04/07/10 © 2008 Haim Michael 12

c:\jarsigner -keystore c:\mykeys.keystore
 -storepass xxxxxx
 -keypass yyyyyy
 myapp.apk aliasname

The jarsigner Utility

© 2008 Haim Michael 04/07/10

© 2008 Haim Michael 13

04/07/10 © 2008 Haim Michael 13

jarsigner
This is the name of the utility we use in order to sign an apk file.

-keystore c:\mykeys.keystore
We should specify the name of the keystore file we want to use. The one that

includes the key.

-storepass xxxxxx
We should specify the password required to access the keystore we want to

use.

The jarsigner Utility

© 2008 Haim Michael 04/07/10

© 2008 Haim Michael 14

04/07/10 © 2008 Haim Michael 14

-keypass yyyyyy
We should specify the password of the alias we specified when creating the

keystore now being used.

myapp.apk aliasname
We should specify the name of the apk file we want to sign following with the

alias name been used when creating the digital certificate we are now using.

The jarsigner Utility

© 2008 Haim Michael 04/07/10

© 2008 Haim Michael 15

04/07/10 © 2008 Haim Michael 15

Deployment using The Eclipse

 Working with the Eclipse we can use the 'Export Android

Application' that uses the keytool and the jarsigner

utilities in order to sign our application. We can avoid using

the keytool and the jarsigner from the command line.

© 2008 Haim Michael 04/07/10

© 2008 Haim Michael 16

04/07/10 © 2008 Haim Michael 16

Deployment using The Eclipse

© 2008 Haim Michael 04/07/10

© 2008 Haim Michael 17

04/07/10 © 2008 Haim Michael 17

Separated Processes

 Each application for the android platform is executed within

a separated process. Each process has a unique and a

permanent ID assigned when the application is installed.

 This separation prevents each application from accessing

other applications directly.

© 2008 Haim Michael 04/07/10

© 2008 Haim Michael 18

04/07/10 © 2008 Haim Michael 18

Separated Processes

 Applications can still share information with each other by

using predefined mechanisms such as content providers,

services and starting new activities from within the running

one.

© 2008 Haim Michael 04/07/10

© 2008 Haim Michael 19

04/07/10 © 2008 Haim Michael 19

Declarative Permission Model

 The android platform implements a declarative permission

model that protects sensitive features, such as the contacts

list, the ability to send and receive SMS, the ability to make

a phone call etc.

 In order to use any of these features and resources we must

add the required (one or more) permissions to the

AndroidManifest.xml file.

© 2008 Haim Michael 04/07/10

© 2008 Haim Michael 20

04/07/10 © 2008 Haim Michael 20

Declarative Permission Model

 When installing an application the android platform either

grants or denies the requested permissions based on the

signature of the .apk file and/or the user's settings and

feedback.

 Each permission is defined as a final static integer variable

within the android.Manifest.permission final static

inner class.

 You can find a detailed list of the available permissions at
http://developer.android.com/reference/android/Manifest.permission.html

© 2008 Haim Michael 04/07/10

© 2008 Haim Michael 21

04/07/10 © 2008 Haim Michael 21

Declarative Permission Model

© 2008 Haim Michael 04/07/10

© 2008 Haim Michael 22

04/07/10 © 2008 Haim Michael 22

Declarative Permission Model

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

