Menus & Dialogs

© 2008 Haim Michael

Introduction

“* The android platform supports an extensive range of

windows and menus.

** The dialogs are asynchronous. This is different from the

known synchronous dialogs on windows.

*» The dialogs in android are managed. We can reuse them.
There is no need to create a new one each time we need a

dialog.

© 2008 Haim Michael

The android.view.Menu Interface

< Each and every activity in the android platform is associated

with a specific object of this type.

“+ Each object of this type can contain menu items and sub

menus.

© 2008 Haim Michael

The android.view.Menultem Interface

“* Each menu item is represented by an object of this type.

© 2008 Haim Michael

The android.view.SubMenu Interface

“* Each sub-menu is represented by an object of this type.

© 2008 Haim Michael

Menu Items Group

“* We can group menu items together into one group. Each
group is assigned with a group ID. Multiple menu items
carrying the same group ID are considered to be part of the

same group.

© 2008 Haim Michael

Menu ltems Attributes

“* Each menu item has the following three attributes: name,

item ID and order ID.

*» The menu items are shown sorted in accordance with their
order ID. Those with the smaller order ID are shown on top

of the others.

© 2008 Haim Michael

Creating Menu

<+ Each activity is associated with a specific menu. We don't
need to create a menu from scratch. A menu object already

exists.

% Overriding the onCreateOptionMenu (Menu menu)

method we can populate the associated menu with menu

items Returning true will make our menu visible.

© 2008 Haim Michael

Creating Menu

<+ Each activity is associated with a specific menu. We don't

need to create a menu from scratch. A menu already exists.

. Menu ltem
1
1 1

Activity Menu (1)

1
\ Sub Menu

© 2008 Haim Michael

Creating Menu

¢ Overriding the onCreateOptionMenu (Menu menu)

method we can populate the associated menu with menu

items Returning true will make our menu visible.

@Override
public boolean onCreateOptionsMenu (Menu menu)

{

//populate menu items

return true;

© 2008 Haim Michael

Creating Menu

package com.abelskil.samples;

import android.app.Activity;
import android.os.Bundle;
import android.view.Menu;

public class MenuDemoActivity extends Activity

{

/** Called when the activity is first created. */
@Override

public void onCreate (Bundle savedInstanceState)

{

super.onCreate (savedInstanceState) ;
setContentView (R.layout.main) ;

© 2008 Haim Michael

Creating Menu

@Override
public boolean onCreateOptionsMenu (Menu menu)

{

// calling base class overdding version to ensure that

// system menu are included
super.onCreateOptionsMenu (menu) ;

menu.add (0,1,0,"Save"); //grouplD,itemID,order,title
menu.add (0,2,1, "Open") ;

menu.add (0, 3,2, "Close");

// the return type must be true in order to see the menu

return true;

© 2008 Haim Michael

Creating Menu

o il & o:40pPMm

Hello World, MenuDemoActivity!

Open

MENU

© 2008 Haim Michael

Menu ltems Groups

* The menu ID is the value sent to the callback function when

the menu is selected.

*» Adding menu items with a different group 1D we get

separated menu items groups.

© 2008 Haim Michael

Menu

package com.abelski.samples;

import
import
import

public
{

android.app.Activity;
android.os.Bundle;
android.view.Menu;

ltems Groups

class MenuDemoActivity extends Activity

/** Called when the activity is first created. */
@Override

public void onCreate (Bundle savedInstanceState)

{

super.onCreate (savedInstanceState) ;
setContentView (R.layout.main) ;

© 2008 Haim Michael

Menu ltems Groups

@Override

public boolean onCreateOptionsMenu (Menu menu)

{
int group a = 1;
int group b = 2;
super.onCreateOptionsMenu (menu) ;
menu.add (group a,1,0,"SaveA");
menu.add (group a,2,1,"OpenA");
menu.add (group a,3,2,"CloseA");
menu.add (group b, 4,3, "SaveB")
menu.add (group b, 5,4, "OpenB")
menu.add (group b, 6,5,"CloseB'’
return true;

14

.

14
').
7

© 2008 Haim Michael

Menu ltems Groups

] Z Ml @ 9:53pPM

:5-n = . ' .. G

Hello World, MenuC

Closed

CloseB

MEMNU

© 2008 Haim Michael

Menu ltems Groups

% Once using groups we can call the following methods on
specific groups.

removeGroup (1d)

Calling this method removes all menu items that belong to the group its ID was

passed over.

setGroupCheckable (id, checkable, exclusive)
Calling this method turns all menu items that belong to the group its ID was
passed over into checkable. If exclusive is true then only one menu item can be

checked at a time.

© 2008 Haim Michael

Menu ltems Groups

setGroupEnabled (id,boolean enabled)
Calling this method we can enable and disable all menu items that belong to the

group its ID was passed over.

setGroupVisible (1d,visible)
Calling this method we can turn on and off the visibility of all menu items that

belong to the group its ID was passed over.

© 2008 Haim Michael

Menu ltems Events Handling

“* We can handle the menu items events in three ways.

* One option is to override the available callback function. Its

name is onOptionsItemSelected.

*» Another option is to define a listener for our menu. Listener
should be an object instantiated from a class that

implements the OnMenuItemClickListener interface.

*» The third option is to use intents.

© 2008 Haim Michael

Overriding Callback Function

¢ This is a call back function we can override in our class. It

will be called each time a menu item is clicked (selected).

@Override
public boolean onOptionsItemSelected (Menultem item)

{
switch (item.getItemId())

return true;

return super.onOptionslItemSelected (item) ;

© 2008 Haim Michael

Define Listener

“* The listener we define should implement the

OnMenuClickListener interface.

public class MyListener implements OnMenultemClickListener

{

@Qoverride
boolean onMenultemClick (Menultem item)

{
return truey;
}

MyListener listener = new MyListener(...);
menultem.setOnMenultemClickListener (listenr);

© 2008 Haim Michael

Define Listener

% |If the onMenuItemClick returns true then no other

callback method will be called.

“* The listener takes precedence over the call back method.

© 2008 Haim Michael

Using Intents

*» Calling the setIntent method on a menu item we can

associate it with an intent.

“* When neither a listener or a callback method respond to a
menu item selection, the startActivity (Intent)

method will be called with the intent associated with the

clicked menu item.

© 2008 Haim Michael

Expanded Menu

“* When the application has more menu items than what it can
display on the main menu then the android platform adds
the 'More' menu item. Pressing 'More' we shall get an

expanded menu with the additional menu items.

*» Expanded menu cannot show icon menus.

© 2008 Haim Michael

lcon Menus

++* We can create menu items that include icons instead of the

texts or together with them.

** In order to get an icon menu item we just need to call the

setIcon () method on our menu item object.

© 2008 Haim Michael

lcon Menus

package com.abelski.samples;

import
import
import
import

public
{

android.app.Activity;
android.os.Bundle;
android.view.Menu;
android.view.Menultem;

class MenuDemoActivity extends Activity

/** Called when the activity is first created. */
@Override
public void onCreate (Bundle savedInstanceState)

{

super.onCreate (savedInstanceState) ;
setContentView (R.layout.main) ;

© 2008 Haim Michael

lcon Menus

@Override

public boolean onCreateOptionsMenu (Menu menu)

{
int group a = 1;
int group b = 2;
super.onCreateOptionsMenu (menu) ;
Menultem l1temA = menu.add(group a,1,0,"SaveA");
itemA.setIcon (R.drawable.icon a);
Menultem itemB = menu.add(group a,2,1,"OpenA");
itemB.setIcon (R.drawable.icon Db);
menu.add (group a,3,2,"CloseA");
menu.add (group b, 4,3,"SaveB");
menu.add (group b, 5,4, "OpenB") ;
menu.add (group b, 6,5, "CloseB") ;
return true;

© 2008 Haim Michael

lcon Menus

u!

Hello World, Men

— o CloseA

Saved

SaveB CloseB

MENU

© 2008 Haim Michael

Sub Menus

“* We can add sub menus to our menu. We can add menu
items to our sub menu. It is impossible to add sub menus to

a given sub menu.

% The SubMenu interface extends Menu.

© 2008 Haim Michael

Sub Menus

package com.abelski.samples;

import android.app.Activity;
import android.os.Bundle;
import android.view.Menu;
import android.view.Menultem;
import android.view.SubMenu;

public class MenuDemoActivity extends Activity

{
/** Called when the activity is first created. */
@Override
public void onCreate (Bundle savedInstanceState)

{
super.onCreate (savedInstanceState) ;
setContentView (R.layout.main) ;

© 2008 Haim Michael

Sub Menus

@Override
public boolean onCreateOptionsMenu (Menu menu)
{
super.onCreateOptionsMenu (menu) ;
menu.add (0,1,1,"OptionA") ;
menu.add (0,2, 2, "OptionB") ;
menu.add (0,3,3,"OptionC") ;
menu.add (0,4,4,"OptionD") ;
SubMenu sub = menu.addSubMenu ("OtherOptions");
sub.add(0,5,5,"Option 1I");
sub.add (0,6,6,"Option II");
return true;

© 2008 Haim Michael

Sub Menus

Al @ 12:01 AM

Hello World, MenuDemoActivity!

OtherOptions OptionA

OptionB OptionC OptionD

MEMNU

© 2008 Haim Michael

Sub Menus

! Al @ 12:02 AM

(® OtherOptions

Option I

Option II

© 2008 Haim Michael

System Menus

¢ Calling the overridden version of onCreateOptionsMenu

method we allow the parent class to add the system menus.

© 2008 Haim Michael

Context Menus

“* Context menus are the small menus we get when right click

our mouse.

*»» Getting a context menu when using the android might
happen in various ways. It depends on the specific handset
model. In most cases, a long press will get us the context

menu.

% The ContextMenu class describes a context menu.

© 2008 Haim Michael

Context Menus

“* Whereas a context menu is owned by a specific view, a
common options menu is owned by a specific activity.
Therefore, an activity can have one options menu only and
unlimited number of context menus. Each context menu is

associated with a specific view.

“ Populating a context menu is done within the scope of the
activity class. Overriding the onCreateContextMenu ()

we can add the menu items to our context menu.

© 2008 Haim Michael

Context Menus

*» Whereas the onCreateOptionsMenu () method is

automatically called the onCreateContextMenu () is not.

% Not every view should have a context menu. Just the ones

we want them to have should have one.

** When we want a specific view to have a context menu we
should register that view with its activity specifically for the

purpose of having a context menu.

© 2008 Haim Michael

Context Menus

“* We reqister a view with an activity for that purpose by calling

the activity.registerForContextMenu () method.

*» In order to add a context menu associated with a specific
view we first need to register the view by calling the
registerForContextMenu () method. Once that method
was called the onCreateContextMenu () callback
function will be called. Within this callback method the

context menu will be populated with its menu items.

© 2008 Haim Michael

Context Menus

package com.abelski.samples;
import android.app.Activity;
import android.os.Bundle;

import android.widget.TextView;
import android.view.ContextMenu;
import android.view.View;

public class MenuDemoActivity extends Activity
{
@Override
public void onCreate (Bundle savedInstanceState)
{
super.onCreate (savedInstanceState) ;
setContentView (R.layout.main);
TextView tv = (TextView) this.findViewById(R.id.TextView(O1) ;
registerForContextMenu (tv) ;
}
@Override
public void onCreateContextMenu (ContextMenu menu, View v,
ContextMenu.ContextMenulInfo menulInfo)
{
menu.setHeaderTitle ("Context Menu Sample");
menu.add (2, 4, 1, "option-a");

© 2008 Haim Michael

Context Menus

! Ml @ 5:06 AM

‘menu demo

Hello World, MenuDemoActivity!

TextView1

MENU

© 2008 Haim Michael

Context Menus

! Tl @ 5:07 Am

(® Context Menu Sample

option-a

© 2008 Haim Michael

Context Menus

< Handling the content menu related events is done by

overwriting onContextItemSelected () call back method.

@QOverride

public boolean onContextItemSelected (Menultem 1tem)

{
if (item.itemId() =)

{

return true;

© 2008 Haim Michael

The onPrepareOptionsMenu () Method

% This method is get called each time the menu is invoked.

“* We can use this method for changing our menu dynamically,
such as disabling parts of our menu or removing some of the

menu items.

© 2008 Haim Michael

Menus Through XML

*» We can interact with our menus via an XML document we

should place within the 'res/menu' sub folder.

+» The XML document that describes our menus isn't created

automatically. It is up to us to choose whether to have one.

“+ Each one of the menus and the menu items will get a
resource ID number we can use. As with the user interface

controls we will get those Ids as fields in R. java.

© 2008 Haim Michael

Alert Dialog

“* The first step in order to get an alert dialog is to construct an

AlertDialog.Builder object.

%+ Once we have an AlertBuilder object we can customize it
by calling various methods on it (e.g. setTitle (),

setPositiveButton () etc.).

% After customizing the AlertDialog.Builder object we can

call the create () method and get an AlertDialog object.

% Calling show () onthe AlertDialog object will display it.

© 2008 Haim Michael

Alert Dialog

% Using this builder class we can construct an alert dialog
window through which the user will be able to perform any of
the following:

1. Read a textual message and respond with 'yes' or 'no’.
2. Select an item from a list.

3. Select multiple items from a list.

4. View the progress of our application.

5. Choose an option from a set of options.

© 2008 Haim Michael

Alert Dialog

package com.abelski;

import android.app.Activity;

import android.app.AlertDialog;

import android.content.DialoglInterface;
import android.os.Bundle;

import android.view.View;

import android.view.View.OnClickListener;
import android.widget.Button;

public class AlertsActivity extends Activity {
/** Called when the activity is first created. */
@Override
public void onCreate (Bundle savedInstanceState) {
super.onCreate (savedInstanceState) ;
setContentView (R.layout.main) ;
final Button bt = (Button)this.findViewById (R.id.Button01) ;

© 2008 Haim Michael

Alert Dialog

bt.setOnClickListener (new OnClickListener ()
{
public void onClick (View view)
{
if (view==Dbt)
{
AlertDialog.Builder builder =
new AlertDialog.Builder (AlertsActivity.this);
builder.setTitle ("Alert Demo Window") ;

DialogInterface.OnClickListener listener =
new DialogInterface.OnClickListener ()
{public void onClick(DialogInterface dialog,
int which) { 1}};
builder.setPositiveButton ("OK", listener);
AlertDialog ad = builder.create();
ad.show () ;

© 2008 Haim Michael

Alert Dialog

! il & 3:22rm

0 Alert Demo Window

-

© 2008 Haim Michael

Prompt Dialog

“+* Based on the same technique described for creating an alert
dialog we can a prompt dialog, a dialog that returns back to
the program a string. That string can be one of those entered

by the user or another meaningful string.

© 2008 Haim Michael

Prompt Dialog

“* The first step would be selecting the layout view we want our

prompt dialog to use.

*» Once we create the XML document that describes the user
interface layout we want to have we can move forward and

get a View object based on that XML.

% Setting the View object in the Builder we use, setting the

other user interface controls we want our prompt dialog to

have and we are set.

© 2008 Haim Michael

Prompt Dialog

% We can now call the show () method in order to display our

prompt dialog.

© 2008 Haim Michael

Prompt Dialog

package com.abelski;

import
import
import
import
import
import
import
import

public
{

android.
android.
android.
android.
android.
android.
android.
android.

app.Activity;

app.AlertDialog;

os.Bundle;

view.LayoutInflater;

view.View;

widget.EditText;
content.DialoglInterface;
content.DialogInterface.OnClickListener;

class PromptDialogProjectActivity extends Activity

private String dialogReplay;

/** Called when the activity is first created.

@Override
public void onCreate (Bundle savedInstanceState)

{

*/

super.onCreate (savedInstanceState) ;
setContentView (R.layout.main) ;

LayoutInflater 11 =
final View view =
AlertDialog.Builder builder =

LayoutInflater. from(this);
li.inflate(R.layout.promptdialoglayout, null);
new AlertDialog.Builder (this);

© 2008 Haim Michael

Prompt Dialog

builder.setTitle ("Prompt Dialog");
builder.setView (view) ;
OnClickListener listener = new OnClickListener ()
{
public void onClick(DialogInterface di, int id)
{

1f (id == DialogInterface.BUTTON POSITIVE)
{ //ok button was pressed
EditText et = (EditText)

view.findViewById(R.1id.prompt for text);
dialogReplay = et.getText () .toString();
}
else
{ //cancel button was pressed
dialogReplay = null;
}
}
} i
builder.setPositiveButton ("OK", listener);
builder.setNegativeButton ("Cancel", listener);
AlertDialog ad = builder.create();
ad.show () ;

© 2008 Haim Michael

Prompt Dialog

8! Al @ 5:27 PM

@ Prompt Dialog

Enter your text

© 2008 Haim Michael

Prompt Dialog

“* The displayed dialog is an asynchronous process. Once the
dialog is shown the main thread returns and continues in its

execution.

“* Nevertheless, the dialog is modal. Mouse clicks apply to the
dialog only.
** We cannot have a simple dialog where we ask for response

and wait for it before moving forward with the execution.

© 2008 Haim Michael

Prompt Dialog

“* One of the ways to overcome this behavior is to have the
activity implement a callback method that will be called when

the prompt dialog is closed.
The last code sample shows a possible way for implementing a callback method

that will be called when the prompt dialog is closed.

© 2008 Haim Michael

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58

