
© 2008 Haim Michael

Memory Management

© 2008 Haim Michael

Screen Orientation Change

 When the screen orientation changes the android platform

destroys the current activity and create a new one.

 In doing so the resources are reloaded in order to recreate

the user interface controls.

 When dealing with huge resources (e.g. big bitmap images)

we can save memory and avoid the reload by keeping them

in static fields.

© 2008 Haim Michael

Screen Orientation Change

...
private static Drawable background;

@Override
protected void onCreate(Bundle state)
{

super.onCreate(state);
 TextView txt = new TextView(this);
 txt.setText("Leaks are bad");

if(background==null)
{

background = getDrawable(R.drawable.image);
}

 label.setBackgroundDrawable(background);
 ...
 setContentView(label);
}
...

Holding the resource in a static
variable will avoid its reloading when
the application changes its screen
orientation.

© 2008 Haim Michael

Static Inner Classes

 We better use static inner classes instead of non static

ones. This way less memory might be consumed.

© 2008 Haim Michael

Weak References

 Wrap references for less important and relatively big

objects using WeakReference objects.

© 2008 Haim Michael

Garbage Collector

 The garbage collector is not perfect. Calling

System.gc() from time to time is a good practice for

avoiding memory problems.

© 2008 Haim Michael

The Proxy Design Pattern

 Implementing this design pattern (when relevant) our

application will consume less memory.

© 2008 Haim Michael

The Proxy Design Pattern

© 2008 Haim Michael

The Flyweight Design Pattern

 Implementing this design pattern (when relevant) our

application will consume less memory.

© 2008 Haim Michael

The Flyweight Design Pattern

© 2008 Haim Michael

Static References

 Be careful of holding either directly or indirectly the context

(activity) reference in a static variable. Such cases will

interfere the garbage collector work.

© 2008 Haim Michael

Extending The Application Class

 We can define a new class that extends Application and

configure it as the application class.

<application android:icon="@drawable/icon"

android:label="@string/app_name"

android:name="com.lifemichael.MyApplication">

...

</application>

© 2008 Haim Michael

Extending The Application Class

 Using the application context for maintaining the

application resources.

 Doing so we will avoid recreating the resources in

according with the activity life cycle.

© 2008 Haim Michael 12/01/13

© 2008 Haim Michael 1

© 2008 Haim Michael

Memory Management

© 2008 Haim Michael 12/01/13

© 2008 Haim Michael 2

© 2008 Haim Michael

Screen Orientation Change

 When the screen orientation changes the android platform

destroys the current activity and create a new one.

 In doing so the resources are reloaded in order to recreate

the user interface controls.

 When dealing with huge resources (e.g. big bitmap images)

we can save memory and avoid the reload by keeping them

in static fields.

© 2008 Haim Michael 12/01/13

© 2008 Haim Michael 3

© 2008 Haim Michael

Screen Orientation Change

...
private static Drawable background;

@Override
protected void onCreate(Bundle state)
{

super.onCreate(state);
 TextView txt = new TextView(this);
 txt.setText("Leaks are bad");

if(background==null)
{

background = getDrawable(R.drawable.image);
}

 label.setBackgroundDrawable(background);
 ...
 setContentView(label);
}
...

Holding the resource in a static
variable will avoid its reloading when
the application changes its screen
orientation.

© 2008 Haim Michael 12/01/13

© 2008 Haim Michael 4

© 2008 Haim Michael

Static Inner Classes

 We better use static inner classes instead of non static

ones. This way less memory might be consumed.

© 2008 Haim Michael 12/01/13

© 2008 Haim Michael 5

© 2008 Haim Michael

Weak References

 Wrap references for less important and relatively big

objects using WeakReference objects.

© 2008 Haim Michael 12/01/13

© 2008 Haim Michael 6

© 2008 Haim Michael

Garbage Collector

 The garbage collector is not perfect. Calling

System.gc() from time to time is a good practice for

avoiding memory problems.

© 2008 Haim Michael 12/01/13

© 2008 Haim Michael 7

© 2008 Haim Michael

The Proxy Design Pattern

 Implementing this design pattern (when relevant) our

application will consume less memory.

© 2008 Haim Michael 12/01/13

© 2008 Haim Michael 8

© 2008 Haim Michael

The Proxy Design Pattern

© 2008 Haim Michael 12/01/13

© 2008 Haim Michael 9

© 2008 Haim Michael

The Flyweight Design Pattern

 Implementing this design pattern (when relevant) our

application will consume less memory.

© 2008 Haim Michael 12/01/13

© 2008 Haim Michael 10

© 2008 Haim Michael

The Flyweight Design Pattern

© 2008 Haim Michael 12/01/13

© 2008 Haim Michael 11

© 2008 Haim Michael

Static References

 Be careful of holding either directly or indirectly the context

(activity) reference in a static variable. Such cases will

interfere the garbage collector work.

© 2008 Haim Michael 12/01/13

© 2008 Haim Michael 12

© 2008 Haim Michael

Extending The Application Class

 We can define a new class that extends Application and

configure it as the application class.

<application android:icon="@drawable/icon"

android:label="@string/app_name"

android:name="com.lifemichael.MyApplication">

...

</application>

© 2008 Haim Michael 12/01/13

© 2008 Haim Michael 13

© 2008 Haim Michael

Extending The Application Class

 Using the application context for maintaining the

application resources.

 Doing so we will avoid recreating the resources in

according with the activity life cycle.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13

