
© 2008 Haim Michael

Memory Management

© 2008 Haim Michael

Screen Orientation Change

 When the screen orientation changes the android platform

destroys the current activity and create a new one.

 In doing so the resources are reloaded in order to recreate

the user interface controls.

 When dealing with huge resources (e.g. big bitmap images)

we can save memory and avoid the reload by keeping them

in static fields.

© 2008 Haim Michael

Screen Orientation Change

...
private static Drawable background;

@Override
protected void onCreate(Bundle state)
{

super.onCreate(state);
 TextView txt = new TextView(this);
 txt.setText("Leaks are bad");

if(background==null)
{

background = getDrawable(R.drawable.image);
}

 label.setBackgroundDrawable(background);
 ...
 setContentView(label);
}
...

Holding the resource in a static
variable will avoid its reloading when
the application changes its screen
orientation.

© 2008 Haim Michael

Static Inner Classes

 We better use static inner classes instead of non static

ones. This way less memory might be consumed.

© 2008 Haim Michael

Weak References

 Wrap references for less important and relatively big

objects using WeakReference objects.

© 2008 Haim Michael

Garbage Collector

 The garbage collector is not perfect. Calling

System.gc() from time to time is a good practice for

avoiding memory problems.

© 2008 Haim Michael

The Proxy Design Pattern

 Implementing this design pattern (when relevant) our

application will consume less memory.

© 2008 Haim Michael

The Proxy Design Pattern

© 2008 Haim Michael

The Flyweight Design Pattern

 Implementing this design pattern (when relevant) our

application will consume less memory.

© 2008 Haim Michael

The Flyweight Design Pattern

© 2008 Haim Michael

Static References

 Be careful of holding either directly or indirectly the context

(activity) reference in a static variable. Such cases will

interfere the garbage collector work.

© 2008 Haim Michael

Extending The Application Class

 We can define a new class that extends Application and

configure it as the application class.

<application android:icon="@drawable/icon"

android:label="@string/app_name"

android:name="com.lifemichael.MyApplication">

...

</application>

© 2008 Haim Michael

Extending The Application Class

 Using the application context for maintaining the

application resources.

 Doing so we will avoid recreating the resources in

according with the activity life cycle.

© 2008 Haim Michael 12/01/13

© 2008 Haim Michael 1

© 2008 Haim Michael

Memory Management

© 2008 Haim Michael 12/01/13

© 2008 Haim Michael 2

© 2008 Haim Michael

Screen Orientation Change

 When the screen orientation changes the android platform

destroys the current activity and create a new one.

 In doing so the resources are reloaded in order to recreate

the user interface controls.

 When dealing with huge resources (e.g. big bitmap images)

we can save memory and avoid the reload by keeping them

in static fields.

© 2008 Haim Michael 12/01/13

© 2008 Haim Michael 3

© 2008 Haim Michael

Screen Orientation Change

...
private static Drawable background;

@Override
protected void onCreate(Bundle state)
{

super.onCreate(state);
 TextView txt = new TextView(this);
 txt.setText("Leaks are bad");

if(background==null)
{

background = getDrawable(R.drawable.image);
}

 label.setBackgroundDrawable(background);
 ...
 setContentView(label);
}
...

Holding the resource in a static
variable will avoid its reloading when
the application changes its screen
orientation.

© 2008 Haim Michael 12/01/13

© 2008 Haim Michael 4

© 2008 Haim Michael

Static Inner Classes

 We better use static inner classes instead of non static

ones. This way less memory might be consumed.

© 2008 Haim Michael 12/01/13

© 2008 Haim Michael 5

© 2008 Haim Michael

Weak References

 Wrap references for less important and relatively big

objects using WeakReference objects.

© 2008 Haim Michael 12/01/13

© 2008 Haim Michael 6

© 2008 Haim Michael

Garbage Collector

 The garbage collector is not perfect. Calling

System.gc() from time to time is a good practice for

avoiding memory problems.

© 2008 Haim Michael 12/01/13

© 2008 Haim Michael 7

© 2008 Haim Michael

The Proxy Design Pattern

 Implementing this design pattern (when relevant) our

application will consume less memory.

© 2008 Haim Michael 12/01/13

© 2008 Haim Michael 8

© 2008 Haim Michael

The Proxy Design Pattern

© 2008 Haim Michael 12/01/13

© 2008 Haim Michael 9

© 2008 Haim Michael

The Flyweight Design Pattern

 Implementing this design pattern (when relevant) our

application will consume less memory.

© 2008 Haim Michael 12/01/13

© 2008 Haim Michael 10

© 2008 Haim Michael

The Flyweight Design Pattern

© 2008 Haim Michael 12/01/13

© 2008 Haim Michael 11

© 2008 Haim Michael

Static References

 Be careful of holding either directly or indirectly the context

(activity) reference in a static variable. Such cases will

interfere the garbage collector work.

© 2008 Haim Michael 12/01/13

© 2008 Haim Michael 12

© 2008 Haim Michael

Extending The Application Class

 We can define a new class that extends Application and

configure it as the application class.

<application android:icon="@drawable/icon"

android:label="@string/app_name"

android:name="com.lifemichael.MyApplication">

...

</application>

© 2008 Haim Michael 12/01/13

© 2008 Haim Michael 13

© 2008 Haim Michael

Extending The Application Class

 Using the application context for maintaining the

application resources.

 Doing so we will avoid recreating the resources in

according with the activity life cycle.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13

