
© 2008 Haim Michael

Location Based Services

© 2008 Haim Michael

Introduction

 The mapping API and the location API are isolated from

each other.

 The mapping API is not part of the Android project. It is a

separated API developed by Google.

 We can use either the API for native development (v2) or

the JavaScript API and develop an hybrid application.

© 2008 Haim Michael

Google Maps Android API v1

© 2008 Haim Michael

The Map Key

 In order to interact with the google map service we first need

to obtain a map key. We need to get two separated keys.

One for development. The other for production.

 In order to get the map key from google we first need to get

the MD-5 digital signature we use to sign our application.

© 2008 Haim Michael

The MD-5 Signature

 We can get the MD-5 digital signature by calling the keytool

utility on our keystore file passing over '-list' option.

 When dealing with the debug signature we can find the

location of the keystore file browsing at

Windows->Preferences->Android->Build.

© 2008 Haim Michael

The MD-5 Signature

 We should call the keytool utility in the following way:

keytool -list -alias our_application_signature_alias

 -keystore "e:\android\temp\mykeys.keystore"

-storepass mykeys_password

 -keypass mykeys_entrance_password

© 2008 Haim Michael

The MD-5 Signature

© 2008 Haim Michael

The MD-5 Signature

 In order to get the MD5 digital signature of the Debug

Certificate we should execute the following code:

keytool -list -alias androiddebugkey -keystore

"C:\Documents and Settings\sh\Local Settings\Application

Data\Android\debug.keystore"

-storepass android -keypass android

This is assuming the keystore file is indeed located in the specified directory. If the

debug keystore file is located in another folder you just need to update this code

with the new location.

© 2008 Haim Michael

Google Maps API v1 Key

 Now, that we have the MD5 digital signature we can browse

google maps web site and get the required key.

 Getting the key for Google Maps API v1 at the following URL

address is no longer feasible. As of March 18th 2013 we can

no long get a key for using Google Maps API v1 at

http://code.google.com/android/maps-api-signup.html.

http://code.google.com/android/maps-api-signup.html

© 2008 Haim Michael

Google Maps API v1 Key

© 2008 Haim Michael

Google Maps API v1 Key

This webpage is no longer Available!

© 2008 Haim Michael

Google Maps API v1 Key

This webpage is no longer Available!

© 2008 Haim Michael

Google Maps API v1 Key

This webpage is no longer Available!

© 2008 Haim Michael

Google Maps API v1 Key

 Once we have the key we can start using the MapView user

interface control.

 Although it is no longer possible to get the key for using

Google Maps for Android v1, applications that already have a

key can continue using it.

© 2008 Haim Michael

The <uses-library> XML Element

 When using classes that are not part of the android

platform as in the case of using classes that belong to

Google Maps API as in the case with using Google Maps

API v1 dealing with the com.google.android.maps package

we should add the <uses-library> XML element into

the AndroidManifest.xml file.

<uses-library android:name="com.google.android.maps"/>

© 2008 Haim Michael

Google Maps API v1 Sample

package com.abelski.android.samples;

import com.google.android.maps.MapActivity;
import android.os.Bundle;

public class JWorldViewActivity extends MapActivity
{

@Override
public void onCreate(Bundle savedInstanceState)
{

super.onCreate(savedInstanceState);
setContentView(R.layout.main);

}

@Override
protected boolean isRouteDisplayed()
{

// TODO Auto-generated method stub
return false;

}
}

© 2008 Haim Michael

Google Maps API v1 Sample

<?xml version="1.0" encoding="utf-8"?>

<RelativeLayout
xmlns:android="http://schemas.android.com/apk/res/android"

 android:layout_width="fill_parent"
 android:layout_height="fill_parent" >

<view class="com.google.android.maps.MapView"
android:id="@+id/map"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:apiKey="___enter_your_key___"
/>

</RelativeLayout>

© 2008 Haim Michael

Google Maps API v1 Sample

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.abelski.android.samples"
 android:versionCode="1"
 android:versionName="1.0">

<application android:icon="@drawable/icon"
 android:label="@string/app_name">
<activity android:name=".JWorldViewActivity"
 android:label="@string/app_name">

<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />

 </intent-filter>
</activity>
<uses-library android:name="com.google.android.maps"/>
</application>

<uses-sdk android:minSdkVersion="4" />
<uses-permission android:name="android.permission.INTERNET"/>
<user-permission android:name="android.permission.ACCESS_FINE_LOCATION"/>
<user-permission android:name="android.permission.ACCESS_COARSE_LOCATION"/>
</manifest>

© 2008 Haim Michael

Sample

© 2008 Haim Michael

The Map Controller

 Each map view has a controller. The controller is a

MapController object.

 We can get it by calling the getController() method on

the MapView object we are working with.

 The MapController class defines several useful methods

we can execute on the MapController object we are

working with.

© 2008 Haim Michael

The Map Controller

public void stopPanning()

Resets the pan state to make the map stationary. This could be necessary if we receive a

key-down event but will never receive the corresponding key-up.

public boolean onKey(android.view.View v,

 int keyCode,android.view.KeyEvent event)

Processes key events and translates them into appropriate panning of the map. Defined in

View.OnKeyListener.

public void animateTo(GeoPoint point)

Start animating the map towards the given point.

© 2008 Haim Michael

The Map Controller

public void scrollBy(int x, int y)

Scroll by a given amount, in pixels. The scrolling won't be involved with animation.

public void setCenter(GeoPoint point)

Set the map view to the given center. There will be no animation.

public void stopAnimation(boolean jumpToFinish)

Stops any animation that may be in progress, and conditionally update the map center to

whatever offset the partial animation had achieved. If the passed value is true, we'll shortcut

the animation to its endpoint. if false, we'll cut it off where it stands.

public int setZoom(int zoomLevel)

Sets the zoomlevel of the map. The value will be clamped to be between 1 and 21 inclusive.

© 2008 Haim Michael

The Map Controller

public boolean zoomIn()

Zoom in by one zoom level. This begins an animated zoom step.

public boolean zoomOut()

Zoom out by one zoom level. This begins an animated zoom step.

public boolean zoomInFixing(int xPixel, int yPixel)

Zoom in by one zoom level. This begins an animated zoom step. xPixel is the offset, in

pixels from the left of the map, where the fixed point of our zoom will be. yPixel is the offset,

in pixels from the top of the map, where the fixed point of our zoom will be.

public boolean zoomOutFixing(int xPixel, int yPixel)

Zoom out by one zoom level. This begins an animated zoom step. xPixel is the offset, in

pixels from the left of the map, where the fixed point of our zoom will be. yPixel is the offset,

in pixels from the top of the map, where the fixed point of our zoom will be.

© 2008 Haim Michael

The Map Controller

public void zoomToSpan(int latSpanE6, int lonSpanE6)

Attempts to adjust the zoom of the map so that the given span of latitude and longitude will

be displayed.

public void animateTo(GeoPoint point, java.lang.Runnable runnable)

Start animating the map towards the given point. If and when the animation reaches its

natural conclusion, this callback will be run on the UI thread. The callback will not be run if

the animation is aborted.

public void animateTo(GeoPoint point, android.os.Message message)

Start animating the map towards the given point. If and when the animation reaches its

natural conclusion, dispatch the given message (if non-null). The message will not be

dispatched if the animation is aborted.

© 2008 Haim Michael

Maps Overlays

 On top of the map we can place custom data in the form of

pushpins or small balloon markers that indicate specific

locations.

 Customized data we want to add on top of our map is

represented by an Overlay object.

© 2008 Haim Michael

Maps Overlays

 The Overlay class is an abstract one. We can work with

objects instantiated from a class that extends the

ItemizedOverlay class. It is another abstract class that

already extends Overlay and includes the definitions for

some of the methods.

 Each specific location on our map is represented by a

GeoPoint object. The location is represented by its latitude

and longitude, in micro degrees.

© 2008 Haim Michael

Overlays Google Maps API v1 Sample

package com.abelski.android.samples;

import com.google.android.maps.MapActivity;

import android.graphics.drawable.Drawable;
import android.os.Bundle;
import com.google.android.maps.MapView;
import android.widget.LinearLayout;

public class JWorldViewActivity extends MapActivity
{

@Override
public void onCreate(Bundle savedInstanceState)
{

super.onCreate(savedInstanceState);
setContentView(R.layout.main);
MapView map = (MapView)findViewById(R.id.map);
map.setBuiltInZoomControls(true);
map.setClickable(true);

© 2008 Haim Michael

Overlays Google Maps API v1 Sample

Drawable mapMarker =
getResources().getDrawable(R.drawable.my_marker);

mapMarker.setBounds(0,0,
 mapMarker.getIntrinsicWidth(),

mapMarker.getIntrinsicHeight());

map.getOverlays().add(new MyLocations(mapMarker));
}

@Override
protected boolean isRouteDisplayed()
{

// TODO Auto-generated method stub
return false;

}
}

© 2008 Haim Michael

Overlays Google Maps API v1 Sample
package com.abelski.android.samples;

import com.google.android.maps.ItemizedOverlay;
import com.google.android.maps.OverlayItem;
import com.google.android.maps.GeoPoint;
import java.util.ArrayList;
import java.util.List;
import android.graphics.drawable.Drawable;

public class MyLocations extends ItemizedOverlay
{

private List<OverlayItem> locations = new ArrayList<OverlayItem>();
private Drawable marker;

public MyLocations(Drawable markerOnMap)
{

super(markerOnMap);
this.marker = markerOnMap;
GeoPoint ubcPitPub = new GeoPoint((int)(49.267446*1000000),

 (int)(-123.250414*1000000));
GeoPoint vegasCity = new GeoPoint((int)(36.188875*1000000),

 (int)(-115.051575*1000000));
GeoPoint newYork = new GeoPoint((int)(40.753499*1000000),

 (int)(-73.927002*1000000));

© 2008 Haim Michael

Overlays Google Maps API v1 Sample

locations.add(new OverlayItem(ubcPitPub,"UBC",
 "University of British Columbia Students Club"));

locations.add(new OverlayItem(vegasCity,"Las Vegas",
 "Las Vegas City View"));

locations.add(new OverlayItem(newYork,"NYC","New York City"));
populate();

}

@Override
protected OverlayItem createItem(int i)
{

return locations.get(i);
}

@Override
public int size()
{

return locations.size();
}

}

© 2008 Haim Michael

Overlays Google Maps API v1 Sample

© 2008 Haim Michael

Location Based Services Permissions

© 2008 Haim Michael

Location Based Services Permissions

 When using the location based services there is a need in the

following permissions (at the minimum):

 <uses-permission

 android:name="android.permission.ACCESS_FINE_LOCATION" />

 This permission is required in order to get data from the GPS.

<uses-permission

 android:name="android.permission.ACCESS_COARSE_LOCATION" />

 This permission is required in order to get data from the wifi

 connectivity.

 <uses-permission android:name="android.permission.INTERNET" />

 This permission is required in order to access the internet.

© 2008 Haim Michael

The Geocoder Class

 Geocoding is the process of translating a an address or a

location into a pair of latitude and longitude numbers.

 The location.Geocoder class provides this service.

Using this class we can translate in both directions. It can take

an address and returns a pair of latitude and longitude

numbers and it can take a pair of latitude and longitude

numbers and return a list of addresses.

© 2008 Haim Michael

The Geocoder Class

public List<Address> getFromLocation (
 double latitude,

double longitude,
int maxResults)

public List<Address> getFromLocationName (
 String locationName,
 int maxResults,
 double lowerLeftLatitude,

double lowerLeftLongitude,
double upperRightLatitude,
double upperRightLongitude)

public List<Address> getFromLocationName (
String locationName,
int maxResults)

© 2008 Haim Michael

The Address Class

 The Address class describes a physical location using a set of

strings in accordance with the xAL (eXtensible Address

Language) as described at the following specification

http://www.oasis-open.org/committees/ciq/ciq.html#6.

http://www.oasis-open.org/committees/ciq/ciq.html#6

© 2008 Haim Michael

The LocationManager Class

 This android.location.LocationManager class

provides us with two mechanisms.

 The first is the ability to get the device geographical location.

 The other is the ability to be notified (via an intent) when the

device enters a predefined geographical location.

© 2008 Haim Michael

The LocationManager Class

 We get a LocationManager object by calling the

getSystemService method that was defined in Activity.

LocationManager manager = (LocationManager)this.

getSystemService(Context.LOCATION_SERVICE);

© 2008 Haim Michael

The Location Class

 Calling the getLastKnownLocation method on our

LocationManager object we should get a Location object

that describes our geographic location.

 Calling this method we should pass over the name of the

location provider from which we want to get the information.

...

Location loc = manager.getLastKnownLocation(

 LocationManager.GPS_PROVIDER);

...

© 2008 Haim Michael

The Location Class

 Once we get a Location object there are various methods we

can call on it in order to get geographic related information

such as the following:

The Device Atitude & Longtitude

Most location providers are capable of providing this basic information.

The Device Altitude

Calling hasAltitude() we shall know whether the altitude information is

available or not.

The Device Bearing

This method returns the degrees east of the true north. Calling hasBearing() we

shall know whether this information is available or not.

© 2008 Haim Michael

The Location Class

The Device Speed

Calling hasSpeed() we can know whether the speed information is available or

not.

© 2008 Haim Michael

The LocationProvider Class

 The LocationManager class provides access to the

available location providers (services).

 Each LocationProvider object represents a specific

location service available on our handset.

© 2008 Haim Michael

The LocationProvider Class

 Calling the getAllProviders() method on our

LocationManager object we shall get a List object that

holds the names of the available location providers.
...

List<String> providerList = manager.getAllProviders();

...

© 2008 Haim Michael

The LocationProvider Class

 Calling the getProvider() method on our

LocationManager object we should passover the name of

the requested content provider. In return we shall get a

LocationProvider object that represents the specific

location provider we passed over its name.
...

LocationProvider provider = manager.getProvider(String name);

...

© 2008 Haim Michael

The LocationProvider Class

 Calling the getBestProvider() method on our

LocationManager object we shall get a reference for a

LocationProvider object that represents the best

matching available location provider.

© 2008 Haim Michael

The LocationProvider Class

 Calling the getBestProvider() we should passover a

reference for a Criteria object that describes the required

characteristics of the location provider we need.
...

Criteria criteria = new Criteria();

criteria.setAltitudeRequired(true);

criteria.setAccuracy(Criteria.ACCURACY_FINE);

criteria.setCostAllowed(true);

...

LocationProvider provider = manager.getBestProvider(criteria);

...

© 2008 Haim Michael

The LocationListener Interface

 Implementing this interface we shall get a class that its

objects can be used as listeners for location changes.

 Calling the requestLocationUpdates() method on our

location manager passing over a LocationListener object

will tie between the two.

 Each time a location update is received the

onLocationChanged method will be called on the

LocationListener object.

© 2008 Haim Michael

The LocationListener Interface

LocationManager manager =

 (LocationManager)getSystemService(Context.LOCATION_SERVICE);

LocationListener listener = new LocationListener()

{

public void onLocationChanged(Location location)

{

if (location != null)

{

Toast.makeText(getBaseContext(),

"[" + location.getLatitude() +

 "] [" + location.getLongitude() + "]",

Toast.LENGTH_SHORT).show();

}

}

© 2008 Haim Michael

The LocationListener Interface

public void onProviderDisabled(String provider)

{

...

}

public void onProviderEnabled(String provider)

{

...

}

public void onStatusChanged(String provider, int status,

 Bundle extras)

{

...

}

};

manager.requestLocationUpdates(manager.GPS_PROVIDER,0,0,listener);

© 2008 Haim Michael

The LocationListener Interface

 When we no longer need the location updates we can call the

removeUpdates() method passing over the reference for

the LocationListener object we registered.

manager.removeUpdates(listener);

 If we avoid calling this method the application will continue to

receive location updates even after the relevant activity is

closed, which will eventually drain the battery.

© 2008 Haim Michael

The Debug Monitor Service

 The android eclipse plug-in includes the DDMS (Debug

Monitor Service).

 We can use it to pass over the emulator information about a

new location.

© 2008 Haim Michael

The Debug Monitor Service

© 2008 Haim Michael

Proximity Alerts

 One of the methods we can call on a LocationManager

object is the addProximityAlert(). This method allows us

to register a PendingIntent object that will be fired when

the device gets within a certain distance of a certain location.

© 2008 Haim Michael

Proximity Alerts

 Calling the addProximityAlert() method we should pass

over five arguments: latitude, longitude, radius

(meters), expiration (milliseconds) and a reference for a

PendingIntent object that will be fired when the device

detects that it has entered or exited the area surrounding the

location.

© 2008 Haim Michael

Google Maps Android API Version 2

© 2008 Haim Michael

Introduction

 The new Google Maps API provides us with many new

exciting features such as 3D maps, indoor mapping and

vector-based tiles for efficient caching and drawing. The new

Google Maps API requires API level 12 or higher.

 The following slides overview the steps required for using the

Google Maps Android API v2 when developing our project

using the Android Studio.

© 2008 Haim Michael

The Google Play Services

 Use the Android SDK manager to ensure that the Google Play

Services is installed. The Google Maps Android API v2 is part

of the Google Play Services.

© 2008 Haim Michael

The Google Play Services

 In order to make the Google Play Services API available for

the project we develop we should update the build.gradle

file. We should add a new build rule to the dependencies

section of our project. It should be a rule that refers the latest

version of google play services.

© 2008 Haim Michael

The Google Play Services

apply plugin: 'com.android.application'

android {
 compileSdkVersion 21
 ...
}

dependencies {
 compile fileTree(dir: 'libs', include: ['*.jar'])
 compile 'com.google.android.gms:play-services:6.5.87'
}

© 2008 Haim Michael

The Google Play Services

 Whenever a new Google Play Services version is released we

better update the build.gradle file with the new version.

 Once the build.gradle was is updated we should sync the

project with it.

© 2008 Haim Michael

The Google Play Services

© 2008 Haim Michael

The Google Play Services

 We should now add the following meta data element as a new

child of the application element in our manifest file. This

element is required in order to inform that our application uses

the google play services.

<meta-data android:name="com.google.android.gms.version"

 android:value="@integer/google_play_services_version" />

© 2008 Haim Michael

The Google Play Services

 We should now update the dependencies section in our

project build.gradle file with specific compile instructions for

adding those specific parts of the google play services that we

need.

 In order to use Google Maps we should add the following:
compile 'com.google.android.gms:play-services-maps:6.5.87'

© 2008 Haim Michael

The Google Play Services

apply plugin: 'com.android.application'

android {
 compileSdkVersion 21
 ...
}

dependencies {
 compile fileTree(dir: 'libs', include: ['*.jar'])

compile 'com.google.android.gms:play-services-maps:6.5.87'
}

© 2008 Haim Michael

The Google Play Services

These are the available APIs we can add to the build.gradle file

© 2008 Haim Michael

Creating ProGuard Exception

 In order to prevent ProGuard from damaging classes we

need we can add the following lines into the proguard-

project.txt file.

-keep class * extends java.util.ListResourceBundle {

 protected Object[][] getContents();

}

-keep public class

com.google.android.gms.common.internal.safeparcel.SafeParcelable {

 public static final *** NULL;

}

© 2008 Haim Michael

Creating ProGuard Exception

-keepnames @com.google.android.gms.common.annotation.KeepName class *

-keepclassmembernames class * {

 @com.google.android.gms.common.annotation.KeepName *;

}

-keepnames class * implements android.os.Parcelable {

 public static final ** CREATOR;

}

© 2008 Haim Michael

Google Maps API Key

 In order to add the Google Maps API key to our application

we should browse the Google APIs Console website. Make

sure you have your project's SHA-1 fingerprint. You can get

it using the keytool utility (part of the JDK).

© 2008 Haim Michael

Google Maps API Key

 Using mac/linux, in order to get the SHA-1 fingerprint for the

application (in debugging phase) you should use the

following command:

keytool -list -v -keystore ~/.android/debug.keystore

 -alias androiddebugkey

-storepass android

-keypass android

© 2008 Haim Michael

Google Maps API Key

 You can now visit the Google APIs Console website and get

a valid Google Maps API key for you can use in your

project.

https://code.google.com/apis/console/

© 2008 Haim Michael

Google Maps API Key

 In order to get the key we just need to create a new project

using the details we have, select the Google APIs we want

to be available for the new created project and get the

credentials (key).

 For using the Google Maps API v2 we should get a Public

API access key (of the 'Android Key' type).

© 2008 Haim Michael

Google Maps API Key

© 2008 Haim Michael

Google Maps API Key

 In order to update our application with the key we got we

just need to add the following meta-data element as a child

to the application element in the AndroidManifest.xml file.

<meta-data

 android:name="com.google.android.maps.v2.API_KEY"

 android:value="______________"/>

© 2008 Haim Michael

Uses Permissions

 We should update the AndroidManifest.xml file adding the

following uses permissions:

<uses-permission android:name="android.permission.INTERNET"/>

<uses-permission

 android:name="android.permission.ACCESS_NETWORK_STATE "/>

<uses-permission

 android:name="android.permission.WRITE_EXTERNAL_STORAGE"/>

© 2008 Haim Michael

Uses Permissions

 In addition, most likely that we will also need to add the

following uses permissions:

<uses-permission

 android:name="android.permission.ACCESS_COARSE_LOCATION"/>

<uses-permission

 android:name="android.permission.ACCESS_FINE_LOCATION"/>

© 2008 Haim Michael

OpenGL ES Version

 Google Maps Android API v2 uses the OpenGL ES version

2 for rendering the graphics. We should specify this

requirement using the <uses-feature> element that should

be added as a child to <manifest> element (in the

AndroidManifest.xml file).

<uses-feature

android:glEsVersion="0x00020000"

 android:required="true"/>

© 2008 Haim Michael

Code Sample

 We can now develop a simple demo for showing a map

using this API.

© 2008 Haim Michael

Code Sample

<?xml version="1.0" encoding="utf-8"?>
<fragment xmlns:android="http://schemas.android.com/apk/res/android"
 android:id="@+id/map"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:name="com.google.android.gms.maps.MapFragment"/>

activity_main.xml

© 2008 Haim Michael

Code Sample

package samples.lifemichael.com.simplegooglemaps;

import android.app.Activity;
import android.os.Bundle;

public class MainActivity extends Activity
{

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);
 }
}

MainActivity.java

© 2008 Haim Michael

Code Sample

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80

