
Android Fundamentals

� � � � � � � � � 	 � �

© 2008 Haim Michael

Introduction

© 2008 Haim Michael

What is Android?

 “Android is a software platform that delivers a complete set of

softwares for mobile devices, including an operating system, a

middle-ware and key mobile applications” (Google).

© 2008 Haim Michael

The Android SDK

 The Android platform is available to Java programmers

through a software development kit, known as the Android

SDK.

 The Android SDK supports most of the Java platform

Standard Edition (Java SE) except for the Abstract Windowing

Toolkit (AWT) and Swing.

 Instead of the AWT and Swing, the Android SDK has its own

extension modern UI framework.

© 2008 Haim Michael

The Android Runtime

 The Android platform has its own optimized Virtual Machine.

Till Android KitKat it was known as Dalvik. As of Android L it is

replaced with ART.

https://source.android.com/devices/tech/dalvik/art.html

https://source.android.com/devices/tech/dalvik/art.html

© 2008 Haim Michael

The Android Runtime

 The main user related improvements ART provides are

Ahead-of-time (AOT) compilation that takes place when the

application is installed, tighter install-time verification and

improved garbage collection.

© 2008 Haim Michael

The Android Runtime

 The improvements ART provides for developers include the

support for a sampling profiler without the overhead known in

traceview, the support for more debugging features and

improved diagnostic details when exceptions take place.

© 2008 Haim Michael

The Android Software Stack

User Applications

The Java Libraries

Android Runtime (VM)

Core C Libraries

The Linux OS

© 2008 Haim Michael

Android Development Tools

 The Android Studio includes the IntelliJ IDE together with the

required plugin installed into it. The Android Studio should be

configured to work with the Android SDK.

 You can alternatively sill use the Eclipse IDE with the ADT

plugin. You can get the Android Studio installed on your

desktop ready for use in one simple download that includes

the IDE, the ADT plugin and the Android SDK.

http://developer.android.com/sdk/installing/studio.html

http://developer.android.com/sdk/installing/studio.html

© 2008 Haim Michael

Android User Interface

 The Android UI, Microsoft Sliverlight, Mozilla XML User

Interface (XUL) and JavaFX belong to the fourth generation

UI frameworks, in which the UI is declarative and

independently themed.

 Developing a Java application for the Android platform we

declare the user interface in XML files.

 Screens are usually activities composed of fragments. Each

fragment has its view.

© 2008 Haim Michael

Installing the Development Tools

 The first steps include installing the Java Development Kit

(JDK), the IDE and the Android SDK. Once installed, there is

a need to install the required additional plugin into the IDE.

 When installing the Android Studio you get it installed bundled

with the plugin, configured and ready for use in one simple

installation.

© 2008 Haim Michael

Federation of Components

 The android platform is kind of a federation of various different

components of the following types: activities, services, content

providers and content providers.

© 2008 Haim Michael

The Android Activities

 The android activity is a user interface single screen in our

application. Each android activity usually contains one or

more views.

© 2008 Haim Michael

The Android Content Providers

 Through the 'Content Provider' mechanism we can share data

without exposing the underlying storage and the underlying

implementation. Through 'Content Provider' our application

can use other applications' data and other applications can

use ours.

© 2008 Haim Michael

The Android Services

 The android service is similar in its nature to services we

know from the windows operating system.

 Local services are accessible by activities that belong to the

same application to which the service belongs. Remote

services are accessible by activities that belong to other

applications as well.

 We can use already existing services as well as creating our

own by declaring a class that extends Service.

© 2008 Haim Michael

The Android Intents

 The Android SDK presents a new and unique concept. The

Intent defines an “intention” to do a specific work (e.g. send a

message, start a service, launch an activity, dial a number,

answer a phone call etc.).

 The intents might be initiated by your applications as well as

by the system (e.g. an intention that represents an arriving

message).

© 2008 Haim Michael

The Android Intents

 The android intent defines an intention to do some work. We

can use intents to perform various tasks, such as

'broadcasting a message', 'starting a service', 'launching an

activity', 'displaying a web page' etc.

© 2008 Haim Michael

The Android Views

 The android view is kind of a canvas self drawn on the

screen.

© 2008 Haim Michael

The Android Configuration File

 The AndroidManifest.xml file is the basic

configuration file that defines our application. It plays a

similar role to web.xml in Java EE web application.

 This file provides the essential information about the

application to the android system. The android needs that

information before it can execute the application.

© 2008 Haim Michael

The Android Configuration File

 Every application must have the AndroidManifest.xml

file. The name cannot be different. The file must be within

the root directory.

© 2008 Haim Michael

The Android Configuration File

 The AndroidManifest.xml names the primary Java

package of the application. This package name serves as

a unique identifier for the application.

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.lifemichael.myapplication">

 <application ... >

...

 </application>

</manifest>

© 2008 Haim Michael

The Android Configuration File

 The AndroidManifest.xml describes the application's

components (activities, services, broadcast receivers, and

content providers), names the classes that implement

each one of the components and publishes their

capabilities, including the Intent messages they can

handle.

© 2008 Haim Michael

The Android Configuration File

 The AndroidManifest.xml lists the required

permissions the user should provide in order to use the

application.

The <uses-permission> should be a child element of

the manifest element.

<uses-permission android:name="string"
 android:maxSdkVersion="integer" />

https://developer.android.com/guide/topics/manifest/uses-permission-element.html#nm
https://developer.android.com/guide/topics/manifest/uses-permission-element.html#maxSdk

© 2008 Haim Michael

The Android Configuration File

 We can use a variant of the uses-permission element

that will take effect if (and only if) the application is running

on API with the specified level (or higher).

<uses-permission-sdk-23 android:name="string"
 android:maxSdkVersion="integer" />

https://developer.android.com/guide/topics/manifest/uses-permission-element.html#nm
https://developer.android.com/guide/topics/manifest/uses-permission-element.html#maxSdk

© 2008 Haim Michael

The Android Configuration File

 The AndroidManifest.xml specifies the minimum

Android API version number required for running the app.

The <uses-sdk> element should be within the

<manifest> element.

<uses-sdk android:minSdkVersion="integer"
android:targetSdkVersion="integer"
android:maxSdkVersion="integer" />

https://developer.android.com/guide/topics/manifest/uses-sdk-element.html#min
https://developer.android.com/guide/topics/manifest/uses-sdk-element.html#target
https://developer.android.com/guide/topics/manifest/uses-sdk-element.html#max

© 2008 Haim Michael

The Android Configuration File

 The AndroidManifest.xml lists the libraries the

application must be linked with. The <uses-library>

element should be child of the <application> element.

<uses-library
 android:name="string"

android:required=["true" | "false"] />

https://developer.android.com/guide/topics/manifest/uses-library-element.html#nm
https://developer.android.com/guide/topics/manifest/uses-library-element.html#rq

© 2008 Haim Michael

The Android Configuration File

 Using the uses-feature element the device is informed

about the set of hardware and software features on which

the application depends. It is possible to specify whether

the application requires and cannot function without the

declared feature or whether it prefers to have that feature

but can work without it.

© 2008 Haim Michael

The Android Configuration File

 The uses-feature element should be child of the

manifest element.

<uses-feature
 android:name="string"

android:required=["true" | "false"]
android:glEsVersion="integer" />

https://developer.android.com/guide/topics/manifest/uses-feature-element.html#name
https://developer.android.com/guide/topics/manifest/uses-feature-element.html#required
https://developer.android.com/guide/topics/manifest/uses-feature-element.html#glEsVersion

© 2008 Haim Michael

Hello World

 Start a new project your IDE. It should be an Android project.

Make sure you choose a meaningful application name. This is the name that will

be shown in the application's title bar.

© 2008 Haim Michael

Hello World

© 2008 Haim Michael

Hello World

 In order to run the application we should first make sure we

have a compatible android device. Either a virtual one (AVD)

or a device connected with our computer.

© 2008 Haim Michael

Hello World

© 2008 Haim Michael

Hello World

© 2008 Haim Michael

The Android Asset Packaging Tool

 This tool is used to pack all files that compose an android

application into one binary file.

© 2008 Haim Michael

The Entry Point Activity

 The android manifest file defines an entry point activity, also

known as the 'Top Level Activity', marked using an intent-filter

element that looks as the following:
<intent-filter>

<action android:name="android.intent.action.MAIN" />

<category android:name="android.intent.category.LAUNCHER" />

</intent-filter>

When the user tries to run an application, the mobile telephone reads the

application manifest file and starts running the activity \ activities that include the

MAIN action with the LAUNCHER category.

© 2008 Haim Michael

The Entry Point Activity

 Once the environment identifies the entry point it starts

running the activity by calling the onCreate() method on

that activity.

© 2008 Haim Michael

The Entry Point Activity

© 2008 Haim Michael

The Intent

 Activities are usually started with an intent. Each activity is

defined using the <activity> element, that may include the

<intent-filter> element defining the intent that starts it.

© 2008 Haim Michael

Calling Other Activities

 When a given activity starts it can call another one. Different

methods allow calling another activity.

startActivity(Intent intent)

startActivityForResult(Intent intent, int requestCode)

startActivityFromChild(Activity child, Intent intent,

int requestCode)

startActivity(Intent)

startActivityForResult(Intent, int)

startActivityIfNeeded(Intent intent, int requestCode)

startNextMatchingActivity(Intent intent)

© 2008 Haim Michael

The Activities Stack

 The activities have a life cycle and all activities are maintained

on an activity stack. The running activity is on top. When a

running activity starts another one then the running activity

moves down the stack and a new activity moves to the top.

© 2008 Haim Michael

Paused & Stopped Activities

 Activities lower in the stack can be called 'paused' or 'stopped'

activities. A paused activity is partially (or fully) visible. A

stopped activity is not visible.

 The execution environment is allowed to kill paused and

stopped activities if their resources are needed by other

activities.

© 2008 Haim Michael

The SQLite Database

 The android platform includes the SQLite database. The

SQLiteDatabase class describes this database.

© 2008 Haim Michael

System Management

 The life cycle of an android application is managed by the

system, based on the user’s needs and the available

resources.
The system own judgment might cause strange situations (e.g. the user might ask

to start running the web browser and the system might prevent that). Current

running activities will get the highest priority. Paused or stopped activities (on the

other hand) are getting a lower priority and the system might shut them down if it

needs their resources.

© 2008 Haim Michael

Separated Processes

 Each application on the android platform runs in a separated

process. Each process is running with its own virtual machine.

 The isolation of each application into a separated process

allows the system to allocate different priorities to each one of

them.

This way, the execution of high priority applications as getting an incoming phone

call is ensured.

© 2008 Haim Michael

Component & Integration Architecture

 The user can move from one application to another. The

system is responsible for saving the state of each application

allowing the user to return back to it at a later stage.

 The system saves meta data on every activity before starting

another.

 When memory becomes an issue the system is allowed to

independently shut down a running activity and resume it

when necessary.

© 2008 Haim Michael

The System Class

 This class in one of the Java classes available on the android

platform.

 Using the getProperties() static function that was defined

in this class we can get detailed information about the android

device on which our application is running.

© 2008 Haim Michael

The android.os.Build Class

 This class includes lots of public static fields we can refer in

order to get detailed information about the build on which our

program is executed.

 The information we get using this class is the same

information we can get through the system properties.

© 2008 Haim Michael

The getSystemService Method

 This method was defined in Context. When we define a new

class that extends Activity we can invoke this method in order

to get a facade implementation that provides us with a simple

access to various remote services of the platform.

...

TelephonyManager mngr = (TelephonyManager)context.

getSystemService(Context.TELEPHONY_SERVICE);

String number = mngr.getLine1Number();

...

© 2008 Haim Michael

The PackageManager Class

 When calling the getPackageManager() function that was

defined in Context we will get a reference for a

PackageManager object.

 The PackageManager object can provide us with detailed

information about the applications installed on our device.

© 2008 Haim Michael

The R Class

 This is an auto generated class that includes inner static

classes for holding static variables assigned with the ids of

each and every resource our application includes.

© 2008 Haim Michael

The BuildConfig Class

 This is an auto generated class that includes the definition for

the final static variable DEBUG.

© 2008 Haim Michael

The ApplicationInfo Class

 Calling the getApplicationInfo() method that was

defined in Context we can get an ApplicationInfo

object through which we can get detailed information about

the application.

© 2008 Haim Michael

The Display Class

 Calling the getWindowManager() method that was defined

in Activity we will get a WindowManager object on which

we can invoke the getDefaultDisplay() method that

returns a reference for a Display object that represents the

display our device uses.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53

