
© 2008 Haim Michael

Intents

© 2008 Haim Michael

Introduction

 Intent means as it sounds. An intent represents an intention

to do something.
An intent can represent an intention to invoke another application or a

component An intent can represent an event you want others to respond.

An intent can represent an action you ask the android platform to invoke.

 We can consider an intent as a message that specifies an

action you want the android to invoke.

 Using an Intent object we can easily start any other specific

activity, service or a broadcast receiver.

© 2008 Haim Michael

Introduction

 When we register an activity in our manifest file we can set

an intent filter that specifies it as the application entry point.

This sample intent filter is the intent that will cause the registered activity to start

when trying to execute the application by tapping its icon on the android

desktop.

We use this intent filter to mark the entry point of our application.

<activity android:name=".PuneHelloActivity"
android:label="@string/app_name">

 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
</activity>

© 2008 Haim Michael

Using Intents to Start Activities

 The following code shows how to use intent in order to start

running another activity.

...

Intent intent =
new Intent(this,com.abelski.intent.action.ShowBasicView.class);

startActivity(intent);

...

© 2008 Haim Michael

Late Run-Time Binding

 The intent messaging facility allows late run-time binding

between components in the same or in different applications

(processes).

 The intent object itself holds an abstract description of the

operation we want to be called (in the case of calling

another activity) or a description of something we want to

announce through a broadcast.

© 2008 Haim Michael

Activities

 There are different separated mechanisms that allow us to

deliver an intent.

 When using intent in order to start another activity we pass it

over to the startActivity or the

startActivityForResult method. Both were defined in

Context.

© 2008 Haim Michael

Activities

 When using intent in order to return a reply back to the

previous activity we should pass over the intent to the

setResult method we invoke on the activity from which

the reply is returned.

© 2008 Haim Michael

Services

 We can start another service by passing over an intent

object to the startService() method that was defined in

Context. We can use the intent in order to initiate the other

service or in order to deliver new instructions to an ongoing

one.

© 2008 Haim Michael

Services

 We can bind between our calling component (e.g. activity)

and the target service by calling the bindService()

method. If the target service is still not running our call will

start it.

© 2008 Haim Michael

Broadcast Receivers

 Passing over an intent object to a broadcast method, such

as the sendBroadcast() method that was defined in

Context, will deliver that intent to all of the interested

broadcast receivers.

© 2008 Haim Michael

The Intent Object Structure

 Each intent holds a bundle of information both for the

component that receives the intent (e.g. info about the

action that should be taken) and for the android system (e.g.

the category of the component the intent is been sent to).

 Each intent includes the following information: Component

Name, Action, Data, Category, Extras and Flags.

© 2008 Haim Michael

The Intent Component Name

 Each intent object includes the name of the component that

should handle the intent. This field is of the

ComponentName type.

 The ComponentName type is holds the fully qualified class

name of the target component, such as

com.abelski.HelloDemo.

© 2008 Haim Michael

The Intent Component Name

 The component name is optional. When the component

name is set the Intent object is delivered to instance of the

specified class. When it is not set, the android platform

locates the suitable target based on the other information

the intent object includes.

© 2008 Haim Michael

The Intent Action

 The action is a string that simply names the action we want

to be performed (when calling an activity) or the action that

took place (when reporting broadcast receivers).

 The Intent class already includes a list of predefined

action constants.

 It is possible to define our own action strings for specific

components in our application.

© 2008 Haim Michael

The Intent Data

 The data is the URI address and its mime types. Different

actions are paired with different kinds of data.

 Different actions are paired with different types of data (e.g.

The ACTION_CALL action is paired with a URI that starts

with 'tel'... The ACTION_VIEW action might be paired with a

URI that with 'http').

 The Intent class provides methods that allow us setting both

the URI and the MIME TYPE.

© 2008 Haim Michael

The Intent Category

 The category is a string that contains additional information

about the component that should handle the intent. Each

intent object can includes more than one category. The

Intent class already includes several predefined categories.

© 2008 Haim Michael

The Intent Extras

 The Extras are key-value pairs for additional information that

should be delivered to the component handling the intent.

 The Intent class defines a series of put...() methods for

inserting various types of extra data and a similar set of

get...() methods for reading the data. These methods

parallel those for Bundle objects. In fact, the extras can be

installed and read as a Bundle using the putExtras() and

getExtras() methods.

© 2008 Haim Michael

The Intent Flags

 Each intent object can include various flags that configure

the way it works.

© 2008 Haim Michael

Intents Resolution

 The intents can be either explicit or implicit. An explicit intent

targets a specific component in accordance with its name.

The component name value is set. An implicit intent doesn't

name a specific target. The component name field is empty.

 Explicit intents are usually been used to activate components

that belong to the same application.

 Implicit intents are usually been used to activate components

that belong to other applications.

© 2008 Haim Michael

Intents Resolution

 When dealing with implicit intents the android platform needs

to find the best component (or components) to handle the

intent. It can be a single activity or service to perform the

requested action or a set of broadcast receivers to respond to

the broadcast information.

 The android platform achieves that by comparing the content

of the intent object to the available intent filters.

© 2008 Haim Michael

Intents Resolution

 The intent filters are data structures associated with

components that can potentially receive intents.

 The intent filters advertise the capabilities of their component

and delimit the intents it can handle.

 The intent filters open the component to the possibility of

receiving implicit intents of the advertised type.

© 2008 Haim Michael

Intents Resolution

 If a component does not have any intent filters, it can receive

only explicit intents.

 If a component does come with intent filters then it can

receive both explicit and implicit intents.

 In the course of finding the most suitable component only

three aspects of each and every intent object are checked

(action, data and category). The extras and flags play no part

in resolving which component will receive the intent.

© 2008 Haim Michael

Intent Filters

 The purpose of the intent filter is to inform the system about

the specific implicit intents the component can handle. Each

component (e.g. activity) can have one or more intent filters.

 Each intent filter actually defines a set of implicit intents the

component is willing to receive. The intent filter actually filters

in implicit intents of a desired type and filter out the unwanted

ones.

© 2008 Haim Michael

Intent Filters

 Each component can have multiple intents filters. Each intent

filter can be for a different job.

 For each intent filter we define in our manifest XML document

an instance of the IntentFilter class is created.

© 2008 Haim Michael

Intent Filters

 Each intent filter has fields that match the action, the data and

the category an Intent object has.

 An implicit intent is tested against the intent filter in all three

areas: the action, the data and the category.

 In order to have the implicit intent delivered to the intent filter

the implicit intent must pass all three tests. It must match all

three areas. The action, the data and the category.

© 2008 Haim Michael

Intent Filters

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.abelski.android"
 android:versionCode="1"
 android:versionName="1.0">

<application android:icon="@drawable/icon"
android:label="@string/app_name">

<activity android:name=".MemoActivity"
 android:label="@string/app_name">

<intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>

 </activity>
 </application>

<uses-sdk android:minSdkVersion="6" />

</manifest>

Intent Filter

© 2008 Haim Michael

The Action Test

 The actions are defined as sub elements of the intent filter

element.

 In order to pass the action test the action must match at

least one of the actions the intent filter lists.

 If the intent doesn't specify a specific action it automatically

passes the test as long as the intent filter specifies one

action at the minimum.

© 2008 Haim Michael

The Action Test

 While an Intent object can name a single action the filter can

list more than one.

 If the intent filter doesn't list any action it will block all intents.

© 2008 Haim Michael

The Category Test

 Each Intent object can specify one or more categories. In

order to pass the category test each category the intent

object includes must have a matched category defined by

the intent filter. Both the intent and the intent filter can list

more than one category.

 In order to pass the category test the intent filter can list

additional categories but it cannot omit the ones the intent

object includes.

© 2008 Haim Michael

The Category Test

 The android platform treats all implicit intents passed over to

the startActivity() method as if they contain at least

one category, the

'android.intent.category.DEFAULT' category.

 Therefore, when defining activities we want to be capable of

receiving implicit intents their intent filters must include this

category.

© 2008 Haim Michael

The Data Test

 The intent filter XML element can include the data XML child

element in order to describe the data it refers.

 The data XML element can include two attributes. The

android:mimeType and the android:schema.

<intent-filter . . . >
 <data android:mimeType="video/mpeg" android:scheme="http://..." />
 <data android:mimeType="audio/mpeg" android:scheme="http://..." />
 . . .
</intent-filter>

© 2008 Haim Michael

The Data Test

 The android:schema specifies a URI. It should be of the

following format:
scheme://host:port/path

The following is a possible example for a URI we can specify:
content://samples.abelski.com:1120/folder/subfolder/

© 2008 Haim Michael

The Data Test

 The android:schema attribute specifies a URI address. This

URI address can include wild cards in order to require partial

match only.

<intent-filter . . . >
 <data android:mimeType="video/mpeg" android:scheme="http://*.3gp" />
 . . .
</intent-filter>

© 2008 Haim Michael

The Data Test

 The android:mimeType attribute specifies a MIME type. Using

a wild card for specifying the subtype field is feasible.

<intent-filter . . . >
 <data android:mimeType="video/*" android:scheme="http://*" />
 . . .
</intent-filter>

© 2008 Haim Michael

The Data Test

 In order to pass the data test both the URI and the MIME type

are compared.

 The URI the intent includes is compared with the URI included

by the intent filter. The comparison includes only those

elements mentioned by the intent filter.
If, for instance, the intent filter includes a URI that includes a schema only then the

schema would be the only one that is been compared.

 The MIME type the intent includes is compared with the one

specified by the intent filter.

© 2008 Haim Michael

The Data Test

 If an implicit intent doesn't contain neither a URI or a data

type then it passes the data test only if the intent filter also

doesn't specify any URIs or a data type.

© 2008 Haim Michael

The Data Test

 If an implicit intent contains a URI but doesn't contain any

data type and the URI doesn't indicate about the type then the

data test will pass only if the URI matches the URI specified

by the intent filter and the intent filter doesn't specify any

specific type.

© 2008 Haim Michael

The Data Test

 If an intent object does contain a data type but doesn't contain

a URI it will pass the test only if the intent filter does indeed

list the same data type and doesn't specify any specific URI.

© 2008 Haim Michael

The Data Test

 When the intent object contains both a URI and a data type

(or the data type can be inferred from the URI) it will pass the

data type part of the test only if its type matches the type

listed by the intent filter. It will pass the URI part of the test if

the URI matches the URI specified by the filter or if the case is

of a 'content://' or a 'file://' URI and the filter doesn't specify

any URI.

file://./

© 2008 Haim Michael

Multiple Matches

 If the intent matches more than one intent filter the user may

be asked which component to activate.

 If the intent doesn't match any of the available intent filters an

exception is raised.

© 2008 Haim Michael

Android Predefined Intents

 The android platform already has a predefined set of intents

that can be used to invoke various activities on our android.
Browsing at http://developer.android.com/guide/appendix/g-app-intents.html you

can find a list of all available predefined applications (e.g. browser, application

that can call a telephone number, application that shows the map of the world,

application that shows street views etc...) and the intents that can start each one

of them.

http://developer.android.com/guide/appendix/g-app-intents.html

© 2008 Haim Michael

Simple Intent Demo

package com.abelski;

import android.app.Activity;
import android.net.Uri;
import android.content.Intent;
import android.os.Bundle;

public class IntentDemoActivity extends Activity
{

/** Called when the activity is first created. */
@Override
public void onCreate(Bundle savedInstanceState)
{

Intent intent = new Intent(Intent.ACTION_VIEW);
intent.setData(Uri.parse("http://www.lifemichael.com"));
this.startActivity(intent);

}
}

© 2008 Haim Michael

Simple Intent Demo

© 2008 Haim Michael

The Intent Flags

 Calling the addFlags method on the Intent object we can

configure it using various flags.

 Each one of the flags is an integer number that its binary

representation includes one bit equals to 1 and all others

equal to 0.

 We can take as many flags as we want and create one

integer number that represent them all.

© 2008 Haim Michael

The Intent Flags

 Each flag has a specific meaning. Combining multiple flags

into one new integer number will have the accumulative

meaning of all flags.

© 2008 Haim Michael

Sample

 Setting the FLAG_ACTIVITY_REORDER_TO_FRONT flag on

the Intent object we pass over to the startActivity

method, if the launched activity is already running it will be

brought to the front instead of creating a new object.

 The following code sample includes an application

composed of 4 separated activities. Each activity allows the

user to start any of the other three activities.

http://www.youtube.com/watch?v=qb9d6nEbxrw

© 2008 Haim Michael

Sample

 Selecting the checkbox will

configure the Intent object

with this flag.

 The hashcode value indicates

about staying with the same

object or about the creation of

a new one.

© 2008 Haim Michael

Sample

public class AActivity extends Activity
{

/** Called when the activity is first created. */
@Override
public void onCreate(Bundle savedInstanceState)
{

super.onCreate(savedInstanceState);
setContentView(R.layout.main);
TextView text1 = (TextView) findViewById(R.id.textView1);
TextView text2 = (TextView) findViewById(R.id.textView2);
text1.setText("class name = " + this.getClass().getName());
text2.setText("object hash code = " + this.hashCode());
final Button btA = (Button) findViewById(R.id.button1);
final Button btB = (Button) findViewById(R.id.button2);
final Button btC = (Button) findViewById(R.id.button3);
final Button btD = (Button) findViewById(R.id.button4);
final CheckBox checkBox = (CheckBox) findViewById(R.id.checkBox1);

© 2008 Haim Michael

Sample

 class ButtonsListener implements View.OnClickListener
{

Intent intent = null;

public void onClick(View v)
{

if (v == btA)
{

intent = new Intent(AActivity.this, AActivity.class);
}
else if (v == btB)
{

intent = new Intent(AActivity.this, BActivity.class);
}
else if (v == btC)
{

intent = new Intent(AActivity.this, CActivity.class);
}

© 2008 Haim Michael

Sample

else if (v == btD)
{

intent = new Intent(AActivity.this, DActivity.class);
}
if (checkBox.isChecked())
{

intent.addFlags(Intent.FLAG_ACTIVITY_REORDER_TO_FRONT);
Toast.makeText(AActivity.this, "flag was added",

Toast.LENGTH_LONG).show();
}
startActivity(intent);

}

}
View.OnClickListener listener = new ButtonsListener();
btA.setOnClickListener(listener);

© 2008 Haim Michael

Android Tasks

 The applications are usually composed of activities. Each and

every activity is designed for a specific action the user

perform. Usually, each and every activity has its own

separated user interface. Usually, each and every activity is

capable of starting other activities.

 The user goes through activities that might belong to different

separated applications.

© 2008 Haim Michael

Android Tasks

 Each task is a collection of activities the user goes through

when performing a specific operation.

 The activities that form a task are organized in a stack in the

same order in which they were opened.

 The home screen activity is the starting point for most tasks.

When the user touches an icon of a specific application that

application's task comes to the foreground. If there is no task

for that specific application then a new task is created.

© 2008 Haim Michael

The Task Root Activity

 When a new task is created then the activity that starts it is

considered to be the root activity of that stack.

 When all of the activities that form the task are removed then

the task is destroyed.

 Each task is a cohesive unit that can be moved to the

background when the user starts a new task or go to the

home screen activity.

© 2008 Haim Michael

Managing Tasks

 When calling the startActivity function in order to start a

new activity we can pass over the

Intent.FLAG_ACTIVITY_NEW_TASK static variable in order

to specify that we want the new activity to start a new task.

 It is also possible to mark those activities we want to start new

tasks in the manifest file. We can add the launchmode

attribute into the <activity> element assigned with the

“singleTask” value.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54

