
© 2008 Haim Michael

Debugging

© 2008 Haim Michael

Introduction

 The Eclipse IDE and the android SDK provide a rich set of

tools that assist us with developing our application for the

android platform and with debugging it.

© 2008 Haim Michael

Eclipse Java Editor

 Developing for the android platform we can enjoy the same

Eclipse IDE features we know when using the Eclipse IDE

for other platforms.

© 2008 Haim Michael

Eclipse Java Editor

© 2008 Haim Michael

Eclipse Java Editor

 When using the Eclipse IDE we get error messages on the

fly concurrently with coding our program.

 We even get suggestions for fixing our code.

© 2008 Haim Michael

Eclipse Java Editor

© 2008 Haim Michael

Eclipse Java Editor

 There are three available ways for toggling a break-point.

 We can select the line and select from the top menu

Run->Toggle Break Point

 We can double click in the left margin of the editor at the line

we want to toggle.

 We can use the keyboard pressing Ctrl+shift+B.

© 2008 Haim Michael

Eclipse Java Editor

© 2008 Haim Michael

Eclipse Java Debugger

 There are three available ways for toggling a break-point.

 We can select the line and select from the top menu

Run->Toggle Break Point.

 We can double click in the left margin of the editor at the line

we want to toggle.

 We can use the keyboard pressing Ctrl+shift+B.

 We start debugging by selecting from our top menu the

'Debug As' option.

© 2008 Haim Michael

Eclipse Java Debugger

© 2008 Haim Michael

Eclipse Java Debugger

© 2008 Haim Michael

Logcat

 Logcat is a general purpose logging facility. The Logcat

pane is available as part of the debugger perspective. The

Logcat pane includes a log of messages.

© 2008 Haim Michael

Logcat

© 2008 Haim Michael

Logcat

 Each one of the messages has a different entry priority. The

Log class includes separated static methods for each one of

the available entry priorities.

static int d(String tag, String msg, Throwable tr)

Send a DEBUG log message and log the exception.

static int d(String tag, String msg)

Send a DEBUG log message.

© 2008 Haim Michael

Logcat

static int e(String tag, String msg)

Send an ERROR log message.

static int e(String tag, String msg, Throwable tr)

Send a ERROR log message and log the exception.

static int i(String tag, String msg, Throwable tr)

Send a INFO log message and log the exception.

static int i(String tag, String msg)

Send an INFO log message.

© 2008 Haim Michael

Logcat

static int v(String tag, String msg, Throwable tr)

Send a VERBOSE log message and log the exception.

static int v(String tag, String msg)

Send a VERBOSE log message.

static int w(String tag, String msg)

Send a WARN log message.

static int w(String tag, Throwable tr)

Send a WARN log message.

© 2008 Haim Michael

Logcat

static int w(String tag, String msg, Throwable tr)

Send a WARN log message and log the exception.

© 2008 Haim Michael

Sample

public class LoggerDemo extends Activity {
@Override
public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);
setContentView(R.layout.main);
Button bt = (Button)findViewById(R.id.Button01);
bt.setOnClickListener(new OnClickListener()
{

@Override
public void onClick(View v)
{

int sum = 0;
for(int i=1; i<=100; i++)
{

sum += i;
Log.i("loop","i="+i+" sum="+sum);

}
EditText text = (EditText)findViewById(R.id.EditText01);
text.setText("sum of 1..100 is "+sum);

}
});

}
}

http://www.youtube.com/watch?v=wPaUxCrp6qI

© 2008 Haim Michael

Sample

© 2008 Haim Michael

Sample

© 2008 Haim Michael

Android Debug Bridge

 The android debug bridge (adb) is a special command line

tool the android platform comes with.

 Using the android debug bridge we can remotely control the

device or the emulator we are working with.

 We can invoke the android debug bridge client from the

command line prompt.

© 2008 Haim Michael

Android Debug Bridge

 Typing 'adb logcat' in the command line will get us the

detailed logcat messages.

© 2008 Haim Michael

Android Debug Bridge

© 2008 Haim Michael

Android Debug Bridge

 Typing 'adb' in the command line will get us a detailed list of

all available adb's commands.

© 2008 Haim Michael

Android Debug Bridge

© 2008 Haim Michael

Android Debug Bridge

© 2008 Haim Michael

Delvik Debug Monitor Service

 Once the android SDK plug-in for the Eclipse IDE is

installed, we can start using the Delvik Debug Monitor

Service (DDMS).

 The DDMS perspective provides a window based interface

for android specific debug information on the emulator (or

the real handset).

© 2008 Haim Michael

Delvik Debug Monitor Service

© 2008 Haim Michael

Delvik Debug Monitor Service

© 2008 Haim Michael

Traceview

 The Traceview utility allows tracking the exact methods that

are been called as well as the exact time each one of these

methods executions takes.

© 2008 Haim Michael

Traceview

 The Traceview utility includes two parts. The first is a small

utility that creates a log file that includes detailed data about

each and every method invocation. The second is a

graphics based application you can execute passing over

the log file and get a detailed graphics representation of all

methods calls.

© 2008 Haim Michael

Traceview

 In order to use the Traceview utility we should first import

the android.os package and add to our code the following

lines.

...
Debug.startMethodTracing(“mytrace”);
...

...
Debug.stopMethodTracing();
...

© 2008 Haim Michael

Traceview

 The Tracebiew utility will fill in the log file on the android SD

card with data generated during the code execution.

 If we work with the emulator then we should create an AVD

with a virtual SD card.

© 2008 Haim Michael

Traceview

 The first step should be creating the file on the SD card:
mksdcard 10M traco

© 2008 Haim Michael

Traceview

© 2008 Haim Michael

Traceview

 The second step should be creating the AVD we want to use

specifying the size of the requested SD card.

© 2008 Haim Michael

Traceview

© 2008 Haim Michael

Traceview

 The third step should be telling the emulator we want to use

a virtual SC card. In the Eclipse IDE you should choose

Window > Preferences > Android > Launch. Within the box

for the emulator options you should add the following code
-sdcard ./traco

 Make sure to specify the complete path to the file, so the

emulator can always find it.

© 2008 Haim Michael

Traceview

© 2008 Haim Michael

Traceview

 The fourth step would be executing our code. Our code

should include the call to start tracing the methods.
Debug.startMethodTracing("traco"); //traco is the filename

In addition, our code should include a call to stop it.
Debug.stopMethodTracing();

 When the application calls startMethodTracing(), the

system creates a file called ___.trace (e.g. traco.trace). This

file contains the binary method trace data and its mapping

table with thread and method names.

© 2008 Haim Michael

Traceview

 When using the Traceview utility the execution times are

significantly slower. Therefore, we shouldn't refer these

times as the accurate one. We can only compare them with

each other.

 Once the execution completes we can get the log data

displayed in a graphics way.
adb pull /sdcard/traco.trace /tmp
traceview /tmp/traco

© 2008 Haim Michael

Traceview

© 2008 Haim Michael

Traceview

© 2008 Haim Michael 10/11/10

© 2008 Haim Michael 1

10/11/10 © 2008 Haim Michael 1

Debugging

© 2008 Haim Michael 10/11/10

© 2008 Haim Michael 2

10/11/10 © 2008 Haim Michael 2

Introduction

 The Eclipse IDE and the android SDK provide a rich set of

tools that assist us with developing our application for the

android platform and with debugging it.

© 2008 Haim Michael 10/11/10

© 2008 Haim Michael 3

10/11/10 © 2008 Haim Michael 3

Eclipse Java Editor

 Developing for the android platform we can enjoy the same

Eclipse IDE features we know when using the Eclipse IDE

for other platforms.

© 2008 Haim Michael 10/11/10

© 2008 Haim Michael 4

10/11/10 © 2008 Haim Michael 4

Eclipse Java Editor

© 2008 Haim Michael 10/11/10

© 2008 Haim Michael 5

10/11/10 © 2008 Haim Michael 5

Eclipse Java Editor

 When using the Eclipse IDE we get error messages on the

fly concurrently with coding our program.

 We even get suggestions for fixing our code.

© 2008 Haim Michael 10/11/10

© 2008 Haim Michael 6

10/11/10 © 2008 Haim Michael 6

Eclipse Java Editor

© 2008 Haim Michael 10/11/10

© 2008 Haim Michael 7

10/11/10 © 2008 Haim Michael 7

Eclipse Java Editor

 There are three available ways for toggling a break-point.

 We can select the line and select from the top menu

Run->Toggle Break Point

 We can double click in the left margin of the editor at the line

we want to toggle.

 We can use the keyboard pressing Ctrl+shift+B.

© 2008 Haim Michael 10/11/10

© 2008 Haim Michael 8

10/11/10 © 2008 Haim Michael 8

Eclipse Java Editor

© 2008 Haim Michael 10/11/10

© 2008 Haim Michael 9

10/11/10 © 2008 Haim Michael 9

Eclipse Java Debugger

 There are three available ways for toggling a break-point.

 We can select the line and select from the top menu

Run->Toggle Break Point.

 We can double click in the left margin of the editor at the line

we want to toggle.

 We can use the keyboard pressing Ctrl+shift+B.

 We start debugging by selecting from our top menu the

'Debug As' option.

© 2008 Haim Michael 10/11/10

© 2008 Haim Michael 10

10/11/10 © 2008 Haim Michael 10

Eclipse Java Debugger

© 2008 Haim Michael 10/11/10

© 2008 Haim Michael 11

10/11/10 © 2008 Haim Michael 11

Eclipse Java Debugger

© 2008 Haim Michael 10/11/10

© 2008 Haim Michael 12

10/11/10 © 2008 Haim Michael 12

Logcat

 Logcat is a general purpose logging facility. The Logcat

pane is available as part of the debugger perspective. The

Logcat pane includes a log of messages.

© 2008 Haim Michael 10/11/10

© 2008 Haim Michael 13

10/11/10 © 2008 Haim Michael 13

Logcat

© 2008 Haim Michael 10/11/10

© 2008 Haim Michael 14

10/11/10 © 2008 Haim Michael 14

Logcat

 Each one of the messages has a different entry priority. The

Log class includes separated static methods for each one of

the available entry priorities.

static int d(String tag, String msg, Throwable tr)

Send a DEBUG log message and log the exception.

static int d(String tag, String msg)

Send a DEBUG log message.

© 2008 Haim Michael 10/11/10

© 2008 Haim Michael 15

10/11/10 © 2008 Haim Michael 15

Logcat

static int e(String tag, String msg)

Send an ERROR log message.

static int e(String tag, String msg, Throwable tr)

Send a ERROR log message and log the exception.

static int i(String tag, String msg, Throwable tr)

Send a INFO log message and log the exception.

static int i(String tag, String msg)

Send an INFO log message.

© 2008 Haim Michael 10/11/10

© 2008 Haim Michael 16

10/11/10 © 2008 Haim Michael 16

Logcat

static int v(String tag, String msg, Throwable tr)

Send a VERBOSE log message and log the exception.

static int v(String tag, String msg)

Send a VERBOSE log message.

static int w(String tag, String msg)

Send a WARN log message.

static int w(String tag, Throwable tr)

Send a WARN log message.

© 2008 Haim Michael 10/11/10

© 2008 Haim Michael 17

10/11/10 © 2008 Haim Michael 17

Logcat

static int w(String tag, String msg, Throwable tr)

Send a WARN log message and log the exception.

© 2008 Haim Michael 10/11/10

© 2008 Haim Michael 18

10/11/10 © 2008 Haim Michael 18

Sample

public class LoggerDemo extends Activity {
@Override
public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);
setContentView(R.layout.main);
Button bt = (Button)findViewById(R.id.Button01);
bt.setOnClickListener(new OnClickListener()
{

@Override
public void onClick(View v)
{

int sum = 0;
for(int i=1; i<=100; i++)
{

sum += i;
Log.i("loop","i="+i+" sum="+sum);

}
EditText text = (EditText)findViewById(R.id.EditText01);
text.setText("sum of 1..100 is "+sum);

}
});

}
}

© 2008 Haim Michael 10/11/10

© 2008 Haim Michael 19

10/11/10 © 2008 Haim Michael 19

Sample

© 2008 Haim Michael 10/11/10

© 2008 Haim Michael 20

10/11/10 © 2008 Haim Michael 20

Sample

© 2008 Haim Michael 10/11/10

© 2008 Haim Michael 21

10/11/10 © 2008 Haim Michael 21

Android Debug Bridge

 The android debug bridge (adb) is a special command line

tool the android platform comes with.

 Using the android debug bridge we can remotely control the

device or the emulator we are working with.

 We can invoke the android debug bridge client from the

command line prompt.

 The server runs in the background. The server communicates either with the

emulator or the handset it self. The communication itself is carried out using the

TCP/IP protocol.

© 2008 Haim Michael 10/11/10

© 2008 Haim Michael 22

10/11/10 © 2008 Haim Michael 22

Android Debug Bridge

 Typing 'adb logcat' in the command line will get us the

detailed logcat messages.

© 2008 Haim Michael 10/11/10

© 2008 Haim Michael 23

10/11/10 © 2008 Haim Michael 23

Android Debug Bridge

© 2008 Haim Michael 10/11/10

© 2008 Haim Michael 24

10/11/10 © 2008 Haim Michael 24

Android Debug Bridge

 Typing 'adb' in the command line will get us a detailed list of

all available adb's commands.

© 2008 Haim Michael 10/11/10

© 2008 Haim Michael 25

10/11/10 © 2008 Haim Michael 25

Android Debug Bridge

© 2008 Haim Michael 10/11/10

© 2008 Haim Michael 26

10/11/10 © 2008 Haim Michael 26

Android Debug Bridge

© 2008 Haim Michael 10/11/10

© 2008 Haim Michael 27

10/11/10 © 2008 Haim Michael 27

Delvik Debug Monitor Service

 Once the android SDK plug-in for the Eclipse IDE is

installed, we can start using the Delvik Debug Monitor

Service (DDMS).

 The DDMS perspective provides a window based interface

for android specific debug information on the emulator (or

the real handset).

© 2008 Haim Michael 10/11/10

© 2008 Haim Michael 28

10/11/10 © 2008 Haim Michael 28

Delvik Debug Monitor Service

© 2008 Haim Michael 10/11/10

© 2008 Haim Michael 29

10/11/10 © 2008 Haim Michael 29

Delvik Debug Monitor Service

© 2008 Haim Michael 10/11/10

© 2008 Haim Michael 30

10/11/10 © 2008 Haim Michael 30

Traceview

 The Traceview utility allows tracking the exact methods that

are been called as well as the exact time each one of these

methods executions takes.

© 2008 Haim Michael 10/11/10

© 2008 Haim Michael 31

10/11/10 © 2008 Haim Michael 31

Traceview

 The Traceview utility includes two parts. The first is a small

utility that creates a log file that includes detailed data about

each and every method invocation. The second is a

graphics based application you can execute passing over

the log file and get a detailed graphics representation of all

methods calls.

© 2008 Haim Michael 10/11/10

© 2008 Haim Michael 32

10/11/10 © 2008 Haim Michael 32

Traceview

 In order to use the Traceview utility we should first import

the android.os package and add to our code the following

lines.

...
Debug.startMethodTracing(“mytrace”);
...

...
Debug.stopMethodTracing();
...

© 2008 Haim Michael 10/11/10

© 2008 Haim Michael 33

10/11/10 © 2008 Haim Michael 33

Traceview

 The Tracebiew utility will fill in the log file on the android SD

card with data generated during the code execution.

 If we work with the emulator then we should create an AVD

with a virtual SD card.

© 2008 Haim Michael 10/11/10

© 2008 Haim Michael 34

10/11/10 © 2008 Haim Michael 34

Traceview

 The first step should be creating the file on the SD card:
mksdcard 10M traco

© 2008 Haim Michael 10/11/10

© 2008 Haim Michael 35

10/11/10 © 2008 Haim Michael 35

Traceview

© 2008 Haim Michael 10/11/10

© 2008 Haim Michael 36

10/11/10 © 2008 Haim Michael 36

Traceview

 The second step should be creating the AVD we want to use

specifying the size of the requested SD card.

© 2008 Haim Michael 10/11/10

© 2008 Haim Michael 37

10/11/10 © 2008 Haim Michael 37

Traceview

© 2008 Haim Michael 10/11/10

© 2008 Haim Michael 38

10/11/10 © 2008 Haim Michael 38

Traceview

 The third step should be telling the emulator we want to use

a virtual SC card. In the Eclipse IDE you should choose

Window > Preferences > Android > Launch. Within the box

for the emulator options you should add the following code
-sdcard ./traco

 Make sure to specify the complete path to the file, so the

emulator can always find it.

© 2008 Haim Michael 10/11/10

© 2008 Haim Michael 39

10/11/10 © 2008 Haim Michael 39

Traceview

© 2008 Haim Michael 10/11/10

© 2008 Haim Michael 40

10/11/10 © 2008 Haim Michael 40

Traceview

 The fourth step would be executing our code. Our code

should include the call to start tracing the methods.
Debug.startMethodTracing("traco"); //traco is the filename

In addition, our code should include a call to stop it.
Debug.stopMethodTracing();

 When the application calls startMethodTracing(), the

system creates a file called ___.trace (e.g. traco.trace). This

file contains the binary method trace data and its mapping

table with thread and method names.

© 2008 Haim Michael 10/11/10

© 2008 Haim Michael 41

10/11/10 © 2008 Haim Michael 41

Traceview

 When using the Traceview utility the execution times are

significantly slower. Therefore, we shouldn't refer these

times as the accurate one. We can only compare them with

each other.

 Once the execution completes we can get the log data

displayed in a graphics way.
adb pull /sdcard/traco.trace /tmp
traceview /tmp/traco

© 2008 Haim Michael 10/11/10

© 2008 Haim Michael 42

10/11/10 © 2008 Haim Michael 42

Traceview

© 2008 Haim Michael 10/11/10

© 2008 Haim Michael 43

10/11/10 © 2008 Haim Michael 43

Traceview

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43

